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Federated Learning on Mask recognition
with its local simulation and optimization

Abstract:

Liukai Tang Even in the post-pandemic era, mask wearing remains
widespread. Not only are masks crucial for stopping and
managing the spread of illness, but many humanities
studies have also shown that people keep wearing masks
also because of a variety of psychosocial-behavioural
factors. It makes the development of efficient mask
recognition technology crucial. Most current research
focuses on centralized training. However, especially for
mask recognition which involves large-scale data and
privacy issues, federated training process has a much
larger advantage. Therefore, this paper investigates a basic
distributed training of mask recognition model with multi-
client participation and central server aggregation. The
model is trained on a real-world dataset under multiple
model configuration combination (local epoch and client
number), then model results like training accuracy,
training loss, and training time under different settings
are tested under several statistic tests. Finally, this paper
explores some balancing strategies regarding local epochs
and client numbers, reveals some interactions between
two configuration argument (local epoch and client
number) and proposes some locally optimal configuration
combinations.
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1. Introduction have gradually transitioned from medical protective
equipment to an everyday-use thing [1]. Gupta et
al.’s research also explored why university students
continue to wear masks post-pandemic, focusing on
psychological motivations such as emotional control,
confidence enhancement, and self-expression con-
cealment [2]. This demonstrates that mask recogni-
tion not only holds significant public health value but
also plays an important role in studying psychosocial

The importance of mask recognition has been in-
creasingly emphasized in last several years. Espe-
cially after the global health crisis caused by the
COVID-19 pandemic triggered by the novel coro-
navirus, masks have emerged as one of the most
effective methods for preventing the spread of dis-
ease. Additionally, in the post-pandemic era, masks



behaviour. Some studies have also pointed out that even
after more than 40 days without local transmission, 62%
of people still wear masks in public places. Women, the
elderly, and urban areas have higher wearing rates [3].
Therefore, even though mask wearing is no longer as nec-
essary or widespread as during the pandemic, there are
still a significant number of people wearing masks, mak-
ing mask recognition even more necessary.

Large amount of research about mask recognition has
been done before. One research has been conducted using
deep learning technology to achieve real-time mask de-
tection with a high accuracy, focusing on finding people
without a mask in public places [4]. A system based on
CNN pre-processing, cropping, and classification can
classify three categories (without mask/ incorrectly worn/
correctly worn) in real time and it is applicable to both
video streams and images [5]. Also, it is shown that with
the combination of Single-Shot Detector (SSD) with Mo-
bileNetV2, the average accuracy rate reached 97.8%, with
a latency of approximately 0.14 seconds per frame [6]. A
Transformer + CNN hybrid model has also been proposed
to enhance the ability to capture long-range dependen-
cies in mask detection, achieving an average precision of
89.4% [7]. Additionally, with YOLOvVS and auto-encoders
on thermal images, the model can perform mask detection
and type classification with mAP >97%, making it suitable
in conditions without enough light [8].

Most of the previous work seems to focus on centralized
training. But for privacy-sensitive mask recognition ap-
plications, such as cross-institutional or cross-monitoring
network collaborative training, the shift to distributed
systems remains crucial. With the aim of attempting to
research on the omissions left unaddressed, the author
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has built a federated learning platform that simulates a
real-world environment with multi-client participation
and central server aggregation for investigating the impact
of different training configurations (e.g. local _epochs vs.
num_clients) on the performance and have performed the
result visualization and statistical comparative analysis.

2. Method

2.1 Structure

The whole experiment can be easily triggered by run_all.
py. It will iterate through all the configuration combina-
tions (e.g. local epochs vs. num_clients) and conduct
experiments accordingly. The server and client will be
simulated and started as subprocesses. Before the training
begins, the images data are evenly distributed by dataset.
py among multiple clients to simulate federated data dis-
tribution. Every client only uses its local data for multiple
epochs of training. Then the server receives models from
each client in each round and performs FedAvg aggrega-
tion and saves .p¢ model file every round. After the entire
training process, all model files from each round of train-
ing will be saved, and visual training data curve charts
and corresponding CSV files will also be generated.

The results can be used for final model evaluation on an
independent test dataset trough evaluate.py, and statistical
testing to verify differences between experimental groups
through statistic_test.py, and uploading images to the
graphical interface provided in predict gui.py to detect
mask wearing status using the model for practical applica-
tions. The basic logic of the workflow is shown in Fig. 1.
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Fig. 1 Project Structure

2.2 Convoluntional neural network model

A custom lightweight convolutional neural network called
MaskCNN is used in this experiment to implement binary

classification of images of faces with or without mask.
The model will take a three-channel color image file with
the size of 224*224 as the input. A pair of convolutional
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layers and a pair of dense layers are included here. The
former convolutional layer receives the 3-channel input
and uses a 3x3 kernel to output 16 channels, with a 2x2
max-pooling layer following. Similarly, the latter convolu-
tional layer uses a 3x3 kernel and takes 16 input channels
to produce 32 channels, also accompanied by another 2x2
max-pooling layer.

The calculation of the size of the convolution layer and
pooling layer follows the following formula. The feature
map’s horizontal and vertical dimensions are /nput, K is
the convolution kernel size, P is the padding which con-
trols the Output size, S is the stride which determines the
scaling of the Output feature map, as shown in formula (1):

1nput—K+2P+lJ' 1)
S

After two rounds of convolution and pooling, the feature
map is reduced to a size of 54x54 with 32 channels. This
output is then flattened into a one-dimensional vector and
passed to the fully connected layers to extract feature and
do classification. The first dense layer reduces the 93312
dimensions input to 64 dimensions, with a ReLU activa-
tion function. The second dense layer outputs two logits,
representing the model’s confidence scores for the two
classes: wearing a mask and not wearing a mask.

The multi-dimensional tensor is converted into a one-di-
mensional vector in the flatten layer so that the following
fully connected layer can correctly process those data. The
formula is shown as in (2), “combined” here is just the
multiplication of the last three elements from the input.

[batchisize, channel, height, width]

Output = L

= [batch _size, combined ] @
And the fully connected neural unit is also based on
baseline formula in (3). W here stands for weight matrix,
which is multiplied with input vector x, then a bias term b
is added, and after activation function o (the author chose
ReLu here) is used, the result vector y can be calculated:

y=0'(W-x+b). 3)

2.3 Loss function

The CrossEntropyLoss method from PyTorch is chosen as
the loss function in this paper. As shown in formula (4),
Z is the logits, and its subscript indicates his position in
the logits, and y represent the true label (as a class index),
with the value of 0 or 1, and total quantity of different
classes is represented by C, which is 2 under this paper’s
certain case.

L=-log| ~—|. 4
g 25:162/ 4)

In the process of classification, CrossEntropyLoss quanti-
fies the discrepancy between expected class probabilities
and actual class label. This method is commonly used
when the model outputs raw logits and the ground truth la-
bels are given as class indices and it is not only practical,
but also mathematically consistent. Even if the true labels
are only category indices, it is still possible to minimize
the classification error rate [9].

2.4 Federated Averaging

In this paper, the most fundamental and classic aggre-
gation method, Federated Averaging, is chosen. In this
approach, in each round, the server first distributes the
global model to some clients, then clients will run multi-
ple rounds of SGD on their own local data, finally at the
end of this round, a new global model is generated by the
server though just averaging the model arguments sent
from clients based on the weighted sample numbers of
each clients.

In the formula (5), w represents the model argument, n
stands for the amount of data used by a certain client, and
K is the total quantity of clients. Default equally weighted
average (n from all clients are the same), i.e. simple aver-
age is used in this study.

11< W (5)
=1

This method successfully achieves both the speed and
flexibility of SGD and the reduction in communication cy-
cles and bandwidth overhead. Also in previous research,
FedAvg achieves linear speedup under different conditions
like strong convex, convex, and smooth, which indicates
that the more devices are involved, the faster convergence
occurs, and it still performs well under realistic distribu-
tions, which is significantly relevant to the practical issue
of mask recognition discussed in this paper [10].

C(_):

3. Experiment

3.1 Dataset

The model is trained and evaluated on a real-world dataset
Real-World Masked Face Dataset, RMFD [11]. This orig-
inal dataset contains a considerably large number of raw
images data of faces with mask and without mask.

Some data-cleaning preprocessing is performed before
the experiment. The author randomly selected a certain
amount of data from the entire dataset to suit the scale
of the experiment, checked the selected image files for
duplicate data and removed them to avoid model training
bias, and standardized the naming format to ensure that
the experimental code could correctly read all data. In the



experiments conducted in this article, 2,000 images for
both faces with mask and without mask were used during
training phase, while 256 images for both were used
during evaluation phase. To prevent overfitting and ensure
the authenticity of model evaluation, it is guaranteed that
there is no overlap between training data and evaluation
data.

If the reader wants to reproduce the experiment with a
larger training dataset, the image files should be named
and placed in the structure as shown in Fig. 2:

Root Directory
|

| face_images | | face_images_test |

masked | unmasked | masked | unmasked |

. L ) L )
facel.jpy facel.jpg facel.jpgy facel.jpg
facel.jpgy face1.jpgy facel.jpy facel.jpg

facexxx.jpg facexxx.jpg facexxx.jpg facexxx.jpg

Fig. 2 Training Dataset File Structure
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3.2 Hardware-Settings and System Environ-
ment

All training and evaluation processes in this study were
conducted on a system equipped with an Intel Core i5-
13400F CPU, an NVIDIA GeForce RTX 4070 Ti SUPER
GPU, 16 GB of RAM, Windows 10 (22H2), Python
3.12.7, and PyTorch with CUDA 12.1 support.

3.3 Experiment Results

3.3.1 Training Accuracy and Training Loss

In Fig. 3, the two experimental images show the trend of
the training accuracy and the training loss respectively of
the model as it changes with the number of rounds under
different federated learning configurations. Each curve
corresponds to a specific combination of local training
epochs and the number of clients, labelled as ep{local
epochs} cli{num_clients} in the plot.
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Fig. 3 Training Accuracy and Training Loss Plot

The training accuracy under all configurations increased
with each round, indicating that the models had good
training capabilities and gradually converged. A rapid
increase in accuracy can be seen within the first 5 to 10
rounds for most configurations, and a stable phase fol-
lows, indicating that most of the training had been effec-
tively completed in the early stages.

Similarly, under all configurations, the training loss de-
creases as the number of iterations increases, indicating
that the model is continuously learning and fitting the
training data. Most curves experience a significant de-
crease within the first 5 rounds, after which they tend to
stabilize, which indicates that the model completes most
of the convergence process in the early stages. It is also
worth noting that, as shown in the figure, the endpoints of
the curves are not as densely clustered as in the left figure
but are more dispersed, indicating that the final loss values
differ across configurations, which may reflect the actual

impact of configuration on model performance.

3.3.2 Friedman Test on Training Accuracy

Since all configuration combinations show similar trends,
focusing on the data at the end of model training is more
experimentally meaningful for evaluating the final per-
formance of the model. The author chose to extract the
training accuracy from the last 3 rounds. In this study,
the Friedman test was used to compare the performance
differences of multiple federated learning configurations
on the same metric, training accuracy, which is suitable
for non-parametric comparisons between multiple related
groups. The result is: statistic is 32.7949, and p-value is
0.0006. Since the p-value is far less than the generally
accepted significance level, which is usually 0.05, it indi-
cates that there is statistically significant discrepancy in
model performance between different configurations, rath-
er than random fluctuations.
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3.3.3 Nemenyi Test on Training Accuracy

After conducting the Friedman Test to identify whether
there are overall significant differences among the test-
ed models or configurations, we proceed to investigate
in greater detail which specific groups exhibit statisti-
cally significant differences compared to others. This is
achieved through the application of the Nemenyi Post-
Hoc Test, a widely used pairwise comparison method
following non-parametric tests. The results of this test are
visualized in Fig. 4, where each cell represents the p-value
corresponding to the comparison between two experimen-
tal settings. A lower p-value in a cell indicates a stronger
statistical difference in performance between the two con-

figurations, suggesting that the observed discrepancy is
unlikely to have occurred by chance. The diagonal cells,
which compare each method with itself, consistently yield
a value of 1, reflecting the absence of any difference in
such self-comparisons. Additionally, the figure utilizes a
color-coded scheme to intuitively convey the strength of
the differences: darker shades represent smaller p-values
and thus more significant contrasts, while lighter shades
denote weaker or non-significant differences. The ac-
companying color bar on the right-hand side provides a
quantitative reference for interpreting the color intensities
across the matrix.

Nemenyi Post-Hoc Test (p-value Heatmap)
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Fig. 4 Nemenyi Post-Hoc Test Plot

The differences between ep8_ cli4 and multiple configu-
rations (such as ep! clil6 and epl cli8) are statistically
significant. The differences between ep! clil6 and ep§
cli4/cli8 are particularly significant, indicating that there
are indeed significant performance differences between
poor training configurations and optimal configurations.
The Nemenyi test results confirmed the leading position
of the significant performance from configuration group
ep8_cli4 and ep8_cli8.

3.3.4 Training Time vs. Average Ranking

In Fig. 5, this Pareto frontier plot illustrates the trade-off

between multiple federated learning configurations on two
key performance metrics: the horizontal axis represents
total training time (in seconds), with lower values being
better. The vertical axis represents average accuracy rank-
ing, with lower values indicating higher accuracy level.
Through this plot, configurations that achieve the optimal
trade-off between training time and accuracy ranking can
be easily identified. Grey dots represent the distribution of
all configurations across time and accuracy, while red dots
connected by red lines form the ‘Pareto Frontier points’:
at these points, no other configuration achieves a better
balance across both metrics.
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Pareto Frontier: Training Time vs. Accuracy Ranking
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Fig. 5 Pareto Frontier Plot

When resources are abundant, it is recommended to select
ep8 cli4 or ep8_cli8 to pursue maximum accuracy. Under
limited resources, prioritizing choosing ep2 cli4 or ep4_
cli8 can balance efficiency and performance. Also, config-
urations that are both slow and have low accuracy, such as
epl clil6 or ep2 clil6 should be avoided using.

3.4 Overall Analysis

The results indicate that the number of local training
epochs has a greater impact on model performance; the
number of clients affects convergence stability and effi-
ciency; there are significant performance differences, with
some configurations significantly outperforming others;
and there is a non-linear trade-off between training time
and accuracy.

This phenomenon may stem from the role of local epochs:
the more local training epochs each client runs, the more
completely the model is updated. High-epoch configura-
tions, such as ep=8, can better achieve local models’ op-
timization before each round of aggregation, therefore it
can improve the convergence quality of the global model.
Correspondingly, according to research by Charles et al.,
local update methods like FedAvg reduce communication
requirements and improve convergence efficiency when
using more local epochs [12].

The number of clients also has a certain impact on the
results. The more clients there are, the more models par-

ticipate in each round, which theoretically increases data
diversity; however, when the number of epochs is small
(e.g., ep=1), each model is not sufficiently trained, lead-
ing to more pronounced oscillations after aggregation.
Additionally, more clients can exacerbate aggregation
noise, affecting training stability, especially during the
initial stages of model training. Also in previous study, it
is clearly pointed out that “the variance of the aggregation
weights” and “covariance” introduced by client sampling
significantly affect the global model’s rate of convergence
so that having relatively more clients isn’t necessarily
preferable, and in the case of heterogeneous data distribu-
tion, the variance and covariance problems are amplified
[13]. This also strongly supports the explanation of why
performance degradation occurs in scenarios with multi-
ple clients and fewer epochs (like the epl clil6 group in
this paper’s experiment).

The source code of the project can be checked via the
following link: https://github.com/Taneck/Federat-
ed-Mask-Recognition

4. Conclusion

In this paper, a federated learning mask recognition sys-
tem is designed. The model is trained under several model
configuration combinations and shows different perfor-
mance in training accuracy, training loss and training
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time. A trade-off needs to be considered when choosing a
proper model argument. Future research directions could
focus on further analyzing the accuracy and generalization
ability of the test dataset, introducing non-IID data parti-
tioning for robustness assessment, modelling and evalu-
ating communication costs and energy consumption, and
attempting to introduce more complex model structures
(such as MobileNetV2) for comparative experiments on
configuration sensitivity.
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