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Abstract:

The advancement of healthcare informatization has
resulted in the exponential growth of patient data stored
across various hospitals, laboratories, and clinical centers,
properly integration and analysis of this data and use it for
machine learning can help make medical processes more
efficient. However, privacy regulations and institutional
silos pose substantial barriers to collaborative research and
centralized model training. Here, Federated Learning (FL)
has surfaced as an innovative distributed learning approach,
as it empowers institutions to jointly build models while
safeguarding raw data privacy. This review outlines
FL’s fundamentals and highlights its applications across
multiple healthcare domains, including medical image
analysis, clinical outcome prediction, and wearable health
monitoring. The fundamental FL designs (horizontal FL,
vertical FL, and split FL learning) and privacy-enhancing
methods (safe aggregation, homomorphic encryption, and
differential privacy) are discussed. Additionally, we also
examine recent advances in adaptive privacy mechanisms,
asynchronous updates and explainable Al to support
clinical integration. The study concludes with a discussion
of current limitations and future research directions, such
as multimodal FL, personalized modeling, and edge-based
computing.

Keywords: Federated learning; Medical data collabora-
tion; Privacy-preserving machine learning.

1. Introduction

severely affected the progress of inter-instructional
cooperation and large-scale model training. To make

As th? informatization process of me.dical industry is  matters more difficult, confidentiality statutes such
speeding up, a large amount of medical data has ac- 55 HIPAA and GDPR give strict prohibitions on ex-

cumulated in hospitals, clinics and laboratories. This changing patients’ health records, making centralized
has led to the formation of siloed local nodes, which 44, aggregation even less feasible. To solve these
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challenges, Federated Learning (FL), came into being.
FL actually is a style of framework of machine learning,
which is non-centralized [1]. FL enables institutions to
perform local model training while exchanging only
parameters and updates, keeping the original data confi-
dential. This mechanism of “keeping data locally, sharing
models globally” takes into account both model perfor-
mance and data privacy requirements, providing a possi-
ble way for medical collaboration. In the medical field,
FL has shown wide application value. First is the Medical
image analysis. FL can enhance the model generalizability
without sharing sensitive images by enabling multi-in-
stitutional collaboration. Besides, Clinical outcome pre-
diction is a kind of Federated models trained by EHR
data from multiple hospitals have shown that they have
strong ability to predict COVID-19 mortality and other
conditions [2]. Last but not least, in order to preclude the
personal information of patient from being exposed when
the continuous about health monitoring, Internet-of-medi-
cal-things (IoMT) data technology comes up. This kind of
local training of wearable devices or sensors is a suitable
solution.

In recent years, many studies have confirmed that FL can
still show performance similar to centralized training
while ensuring the security of private data [3]. In addition,
the platform and algorithms continue to mature, includ-
ing privacy-enhancing mechanisms as demonstrated by
differential privacy, homomorphic encryption, and secure
aggregation, which effectively deal with non-IID data,
communication costs, and potential attack risks. This re-
view seeks to present an extensive survey on the applica-
tions of federated learning within the healthcare domain:
First, I will present the core concepts of FL and empha-
size its unique value in healthcare applications. Then, I
will analyze existing technical systems and deployment
architectures—covering horizontal and vertical FL, split
learning, and privacy-preserving techniques—and review
key use cases. Finally, I will present development trends
based on the current status of FL, such as multimodal FL,
personalized modeling, incentive mechanisms, and per-
sistent clinical deployment barriers. By combining theory
with practice, this overview provides a valuable roadmap
for academic researchers and practitioners to guide and
advance the safe and effective application of FL in health-
care.

2. Federated Learning Fundamentals
& Its Value in Medicine

2.1 What Is Federated Learning
Federated learning (FL) fundamentally follows the idea

that “data remains local, while the model gets shared [1]”,
this can promote collaboration among institutions to pro-
tect privacy. In a typical FL cycle: a primary server sends
a centralized model to clients, and then every client can
optimize the model on locally measurements, returning
nothing except model updates. Finally, these models will
be pooled into a revamped form, improved consolidated
model. This approach effectively addresses two major
obstacles in making progress on medical issues: one hin-
drance among is to protect patients’ privacy, and another
one is how to manage data heterogeneity owing to dif-
ferences in imaging protocols, device types, and patient
demographics.

2.2 Core Algorithms & Privacy Enhancements

Federated Averaging (FedAvg) is the cornerstone algo-
rithm of FL. This algorithm allows clients to train several
times locally before sending compressed and aggregated
model updates to the server. This approach has greatly re-
duced communication costs and, also can achieve results
comparable to centralized training.

2.3 Medical Applications & Impact
2.3.1 Medical Image Analysis

Large and diverse imaging datasets are essential for model
development. However, due to the privacy laws, sharing
raw images is often not practical. But thanks to the mech-
anism of federated learning, institutions can collaborate on
training without exchanging data. This kind of technology
enables multi-center CT, MRI, and X-ray model training
while ensuring data security.

2.3.2 Medical Applications & Impact

One common example is the EXAM model, which pre-
dicts the oxygen requirement of COVID-19 patients using
data from 20 healthcare facilities worldwide. In predicting
prognostic outcomes with in 24 and 72 hours following a
patient’s initial emergency department visit, the EXAM
model achieved an average discrimination index (AUC)
exceeding 0.92. This demonstrating exceptional discrimi-
native of EXAM. This result underscores the model’s high
reliability in terms of predictive accuracy. Compared to
models developed solely on data from a single research
center, EXAM integrates data from multiple participating
centers, resulting in a 16% improvement in the average
AUC across all centers, significantly enhancing the mod-
el’s external validity. Furthermore, the model’s transfer-
ability improved by approximately 38%, indicating robust
applicability and consistency across diverse clinical con-
texts and patient cohorts [2]. This data increase validates
and demonstrates how Federated Learning can markedly



enhance predictive performance while safeguarding pa-
tient privacy.

3. Existing technical system of federat-
ed learning in medical scenarios

After outlining the paradigm of FL, it is now time to ex-
amine in detail how these architectures and privacy mech-
anisms can be assembled into practical systems suitable
for clinical applications.

3.1 System Architecture and Paradigm Classifi-
cation

First, there are three main architectures for federated
learning across healthcare institutions:

Horizontal federated learning is utilized when different
hospitals occupy a common feature space (e.g., demo-
graphics, lab results, images) but manage different patient
populations. This type of federated learning enhances
statistical power as it preserves the confidentiality of the
original data [1].

Vertical federated learning complements this setting by
linking complementary feature sets of overlapping pa-
tients (e.g., electronic health records (EHR) plus genom-
ics) and enabling richer models through feature fusion [4].
Split learning divides the neural network itself between
the client and the server. It exchanges intermediate acti-
vation values instead of raw inputs, which makes it a pri-
vacy-focused architectural alternative that is particularly
suitable for vertically divided hospital systems [5].

3.2 Privacy and Security Mechanisms

Having outlined architectures, we turn next to mecha-
nisms safeguarding patient privacy: Differential privacy
introduces calibrated noise into model updates, preserv-
ing utility while limiting the model from being a channel
for leaking any personally sensitive information in the
training dataset [6]. Secure aggregation protocol ensures
that only aggregated model parameters are visible to the
coordination server [7]. Homomorphic encryption and
multi-party computation support computation on encrypt-
ed data, but the computational cost is high [8]. These
combined techniques support privacy assurance in the
context of healthcare network identity (FL) and are widely
described in various frameworks.

3.3 Platform Support

To enable the implementation of Federated Learning (FL),
several open source platforms provide the necessary tools:
MedPerf benchmarks can distribute medical Al models
without centralizing data; TensorFlow Federated provides
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an extensible research framework, which supports FL
simulation for horizontal and vertical setups; FATE (Fed-
eral Al Technology Enabler) has specially developed three
technologies, namely secure aggregation, HE and MPC,
for healthcare applications to support safe and stable
actual production use. Despite these advances, integra-
tion with hospital IT systems remains non-trivial due to
interoperability challenges, regulatory requirements, and
coordination of clinical workflows.

3.4 Using Cases

Application Examples Federated learning has been suc-
cessfully applied to multiple healthcare-related segments
and has brought tangible improvements to the work in this
field: In medical imaging for diagnostic purposes, em-
ploying a multi-center federated learning approach has ef-
fectively enhanced breast cancer identification, lung nod-
ule recognition on CT scans, as well as retinal pathology
classification. Compared with single-center training, the
typical value of model AUC has increased by about 5-10%
[9]; in the field of clinical outcome prediction, federated
learning models have been successfully used to predict
COVID-19 prognosis (such as mortality, ICU admission
rate), and AUC>0.80 has been achieved in multi-hospital
studies [10]; in wearable health monitoring, datasets asso-
ciated with electronic health records (EHR) and derived
from the Internet of Things (IoT) (such as electrocardio-
grams and psychological signals) have achieved federated
detection of mental health status and arrhythmias, with an
F1 score of>0.85 [11].

3.5 Comparative Evaluation

Comparative Evaluation Studies have shown that horizon-
tal, vertical, and split FL differ in performance, communi-
cation cost, and privacy assurance: horizontal FL gener-
ally provides the highest AUC (0.85-0.92) with moderate
communication cost [12]; vertical FL increases feature
richness and improves performance by about 3%, but en-
cryption overhead is relatively higher [1]; split learning
minimizes the exchange of raw data, but the accuracy may
vary (up to 8%) depending on the location of the slice.
The effectiveness of the model is usually measured by ac-
curacy, AUC, F1 score, number of communication rounds,
bandwidth consumption, and formal privacy proofs [4].
Current benchmarks emphasize that no FL method is uni-
versally optimal, and deploying FL must balance data het-
erogeneity, privacy requirements, and system constraints.

4. Future Trends in Medical Federated
Learning

However, despite the current positive development trend
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of the federated learning (FL) framework, there are still
many challenges along the way.

4.1 Adaptive Differential Privacy

As mentioned above, adding noise is a guarantee to avoid
leaking private data during model training. However, if
noise is added blindly all the time, it will generate too
much computational burden. Therefore, the research on
adaptive differential privacy came into being. This method
does not simply add noise, but adapts the privacy param-
eters based on the sensitivity of each dataset. Through a
lightweight encryption protocol tailored for hospitals, the
computational burden can be greatly reduced without ex-
ceeding the regulatory scope [13].

4.2 Beyond Batch Model Updates

As the scale of model training data increases, batch send-
ing and receiving models can no longer meet the needs.
To solve this problem, methods such as gradient compres-
sion, hierarchical aggregation, and asynchronous client
updates are booming. Furthermore, it’s intriguing to note
that recently conducted research has demonstrated that
these modifications may even enhance model convergence
when dealing with identically distributed (IID) data, par-
ticularly when paired with class imbalance techniques
[14].

4.3 Explanation and Standardization by Design

Gaining the trust of clinicians is essential to advancing
the integration of federated learning models into medical
practice. Therefore, explainable logical reasoning tools
(such as local SHAP or Grad-CAM) are becoming essen-
tial rather than optional. In addition, interoperability stan-
dards consistent with the ontology are gaining more and
more attention to make real-world deployment possible
rather than just an ideal aspiration [13].

4.4 Cutting-edge technology: basic model and
edge elastic computing

Combining the joint fine-tuning of basic models in the
healthcare field with elastic edge-based computing on
hospital nodes or devices is a possible direction. This di-
rection is expected to reduce latency, improve autonomy,
and truly realize clinical applications - although it also
complicates trust, explainability, and architecture.

5. Conclusion

In summary, Federated learning (FL) facilitates joint mod-
el development among diverse healthcare entities while
shielding private patient information, effectively solving
the data silo problem and promoting inter-institutional

cooperation under strict privacy-preserving legal frame-
works. It augments predictive capability without compro-
mising the security of local dataset, which highlights its
key value in modern healthcare. We not only reviewed
the core architecture (e.g., horizontal learning, vertical
learning, and split learning) of federated learning but also
a broad of different privacy-protection schemes. Notable
applications include medical imaging (e.g., breast cancer,
CT scans), clinical outcome prediction (e.g., COVID-19
prognosis), and wearable-based health monitoring, all of
which have shown improvements in model generalization
and accuracy.

Despite these advances, significant challenges remain.
Data heterogeneity between clients can lead to statistical
biases and related issues of non-IID, which can affect
model convergence. In addition, federated learning sys-
tems consume a lot of computing resources and band-
width, which limits their application in clinical settings.
Complying with evolving regulatory frameworks, ensur-
ing deployments fit hospital workflows, and earning cli-
nician trust also become socio-technical hurdles. Looking
ahead, future efforts should focus on:

- Multimodal integration: Incorporating electronic health
record (EHR), imaging, genomics, and wearable device
data into federated learning (FL) to enhance diagnostic
capabilities.

- Personalized federated learning: Tailoring models to
institution-specific distributions for meta-learning or per-
sonalized aggregation.

- Standardized security assessments: Creating benchmarks
and audit protocols to safeguard the privacy, robustness,
and performance of federated learning systems.

- Interpretability and interoperability: Embedding inter-
pretable modules that meet clinical standards to ensure
transparency and seamless clinical application.

- After addressing these issues, federated learning can
develop into a robust, secure, and tightly clinically inte-
grated technology. Such advances hold the promise of de-
centralized Al, which will have a real impact on the entire
healthcare ecosystem while protecting patient privacy.
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