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The Analysis of Hybrid Machine
Learning Approach for Evaluating the

Non-Pharmaceutical Intervention on
Transmission of COVID-19 in China

Abstract:

Haochen Zhangl’* COVID-19 is a severe disaster for human society.

There are several models to predict the transmission
Calizme of Setnes, Mahemniiss of COVID-19. This study as§essed a .hybrid modelling
T e framework that integrates a time-varying SEIRD model
University, Wenzhou, 325000, China with a LSTM neural network to evaluate the effects of
non-pharmaceutical interventions (NPIs) on COVID-19
transmission in China. The model is trained on daily
provincial-level data from 2020 to 2023, including
confirmed cases, policy indicators, and mobility indices.
Through the LSTM, the framework captures both
mechanistic epidemic dynamics and behavioral responses
to interventions. Compared to baseline models, the
hybrid approach yields lower RMSE and MAPE across
31 provinces and regions, particularly during periods
of policy shifts and regional outbreaks. This approach
provides a flexible and interpretable tool for forecasting
regional outbreaks and assessing the effectiveness of NPIs,
supporting data-driven public health decision, which
is meaningful for preventing the further spread of the
virus and provide the experience for dealing with similar
epidemics.
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1. Introduction In response, Chinese government has implemented

different non-pharmaceutical intervention (NPIs) in
A severe pandemic called COVID-19 pandemic e to contain the speared of the virus, including
broke out in Wuhan, Hubei Province, China at the  |5ckdowns, social distancing mandates, enhanced
end of 2019. This pandemic which was caused by tegting and contact tracing, and travel limits during

SARS-CoV-2 ha.s r.apidly escalated iqto a global  {he main outbreak phase from January 2020 through
emergency and millions of people were infected [1]. 2021 and there is no doubt that these interventions



had an impact. As a consequence, modelling and forecast-
ing the trajectory of the epidemics under multiple NPIs
is significant for designing effective data-driven public
health strategy in both China and the rest of the world.
There are several traditional models like Susceptible-Ex-
posed-Infectious-Recovered (SEIR) and Susceptible-Ex-
posed-Infectious-Recovered-Discharged (SEIRD) which
are widely applied in various epidemic dynamics in China
and hybrid models integrating mechanistic and machine
learning approaches have shown superior performance.
Research from Zhong et al. applied modified SEIR model
and Long-Short Term Memory (LSTM) model trained
on SARS data to quantitatively evaluate the impact of
the China’s public health interventions on COVID-19
epidemic trajectory. This study predicted the possible
number of cases and indicated the significance of NPIs on
COVID-19 prevention [2]. In addition, Thanh et al. com-
bined SIR models with LSTM networks and NLP together
to establish a hybrid Al framework to quantify the impact
of NPIs on population contact rates, policy compliance,
and viral transmission dynamics parameters and eventual-
ly indicated that the NPIs were able to control the spread
of virus effectively without the vaccines or drugs [3].
Different from implementing hybrid models, some studies
have adopted the pure machine learning methods. Hu et
al. applied a modified stacked auto-encoder to forecast
COVID-19 trajectories across 34 Chinese provinces,
which successfully achieved high accuracy and reveal-
ing 9 distinct transmission clusters driven by geographic
proximity. This Al-driven method provided real-time pro-
vincial-level risk evaluations, demonstrating the potential
of data-based models to supplement traditional epidemi-
ological frameworks [4]. The study by Shao et al. imple-
mented the multi-factor LSTM model alongside the SVR
and TCN to predict 14-day COVID-19 new cases across
15 countries or regions. This study implemented the pure
machine learning method and eventually confirmed the
impact of different NPIs on the number of new cases [5].
Although the model predictions are significant, there are
still several situations need to be considered. More recent
work has focused on integrating mobility and policy data
within deep learning models. Zheng et al. embedded the
NLP and LSTM model into their new ISI model to esti-
mate the change of affected rate. The authors concentrated
more on the actual situations. For example, peoples had
a high awareness of prevention after the propaganda of
government and the author consider these as a parameter
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to improve their model and eventually obtain low Mean-
Absolute Errors (MAPESs) of prediction [6]. Ilin et al. had
linked the public mobility from several countries to case
growth and implemented simple ML models to forecast
local outbreaks and eventually illustrated that how travel
limits and movement restrictions reduced the transmission
[7]. Ni et al. also compare the difference from the NPIs of
four big cities in China Mainland, Hong Kong China and
Singapore and demonstrate the significant impact of NPIs
[8].

New spatial-temporal models also further improved
predictions. Wang et al. combined LSTM with cellular
automata to capture regional interactions within China.
The result shows that LSTM-CA performs a higher statis-
tical accuracy than LSTM and spatial accuracy than CA,
which could demonstrate the effectiveness of the proposed
model [9]. On a broader scale, Haug et al. evaluated over
6000 NPIs around the world and rank them through the
regression techniques to assess the effect and give general
suggestions on preventing the COVID-19 [10].

Although these studies have contributed significantly to
COVID-19 in China, the most of researches concentrated
on specific regions or single NPI. As a consequence, this
essay aims to evaluate a hybrid machine learning frame-
work in order to provide more accurate prediction of the
trend of epidemic under the different NPIs.

2. Methods

2.1 Data Sources

This study applied several open-access datasets to con-
struct a hybrid framework. Specifically, the datasets in-
clude COVID-19 Epidemiological Data, Non-Pharmaceu-
tical Interventions (NPIs) and Population Mobility Data.
They are Daily cumulative confirmed cases, recoveries,
and deaths at the provincial level in mainland China from
January 2020 to March 2023, sourced from the Harvard
China Data Lab dataset, Provincial-level policy measures
including lockdowns, gathering restrictions, travel bans,
and mask mandates and Daily indices of inter-provincial
migration (inflow and outflow) provided by Baidu Mobili-
ty Index (2020-2022) respectively.

In order to construct the model, the following variables
were chosen as explanatory and target variables. The de-
tailed variable will be listed in the table 1 below.
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Table 1. Variable table

Variable Name Data Source Variable Type Unit

Daily New Confirmed Cases Harvard China Data Lab Target Persons/day
Stringency Index Oxford OXCGRT Feature 0-100

School Closure Level Oxford OxCGRT Feature Ordinal (0-3)
Workplace Closure Level Oxford OxCGRT Feature Ordinal (0-3)
Travel Restriction Level Oxford OxCGRT Feature Ordinal (0-4)
Mask Mandate Oxford OxCGRT Feature Binary (0/1)
Inflow Mobility Index Baidu Mobility Feature Relative Index
Outflow Mobility Index Baidu Mobility Feature Relative Index
Mean Temperature China Meteorological Administration Feature °C

Relative Humidity China Meteorological Administration Feature %

2.2 Method Introduction

2.2.1 SEIRD model

There are 5 variables in SEIRD model, including S(t),
E(t), I(t) R(t), D(t). They are susceptible population,
exposed (infected but not yet infectious), infectious indi-
viduals, recovered individuals and deceased individuals
respectively. These variables satisfy the equations below:
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2.2.2 LSTM models

The LSTM neural network is used to capture the non-
linear influence of NPIs and population mobility on the

time-varying transmission rate /3 (t) Its mathematical

expression is:
p (t) = f(NPlindicators,_,,,Mobilityindices,_.,)  (6)

This function represents the LSTM-based estimation of

t-7it?

the time-varying transmission rate ,B(t) It takes as input

a sequence of non-pharmaceutical intervention (NPI) in-
dicators and mobility metrics from the past 7 days and
outputs a predicted transmission rate for day t.

This model takes as input a sequence of features from
the past N days and outputs the predicted B(¢) for the

next day. The network is trained by minimizing the mean
squared error loss function defined as:

1 - obs pred 2
L= ? Z(yz 2 ) (7)
t=1

This is the loss function used to train the LSTM model. It
measures the average squared difference between the ob-
served and predicted case counts over t days.

2.3 Training Procedure

The training procedure includes using data from 2020 to
2021 as the training set, the first half of 2022 as the vali-
dation set, and the second half of 2022 to March 2023 as
the test set. The Adam optimizer is used for parameter up-
dates, hyperparameters are tuned through the grid search,
and the model performance is assessed basing on the root
mean square error (RMSE).

3. Results and Discussion

3.1 Overall Predictive Performance

The predictive capability of the hybrid model was as-
sessed by using two standard error metrics: Root Mean
Squared Error (RMSE) and Mean Absolute Percentage
Error (MAPE). Table 2 summarizes the average perfor-
mance of the proposed hybrid model and two baseline
models-namely, a static-parameter SEIRD model and a
standalone LSTM network-across 31 provincial-level
units over the test period (July 2022-March 2023).
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Table 2. Model performance comparison

Model Type RMSE (cases/day) MAPE
Static SEIRD 712.5 19.7
LSTM only 521.2 14.6
SEIRD + LSTM (hybrid) 436.8 11.3

The hybrid model achieved the best accuracy with a mean
RMSE of 436.8 cases/day and a MAPE of 11.3%, out-
performing the SEIRD model (RMSE = 712.5, MAPE
=19.7%) and the LSTM-only model (RMSE = 521.2,
MAPE = 14.6%). This improvement confirms that incor-

porating a time-varying #(¢) driven by dynamic features

substantially enhances the model’s ability to reflect re-
al-world epidemic progression.

The performance gap is especially notable during the late
2022 Omicron wave and early 2023 reopening phase,
where many provinces experienced sharp but heteroge-
neous case surges. While the SEIRD model underesti-
mated peak magnitudes due to fixed parameters, and the
LSTM-only model exhibited time-lag bias in response
to policy shifts, the hybrid framework achieved more re-
sponsive and smoother predictions.

3.2 Regional Analysis

To examine regional differences in model performance,
five representative provinces or regions including Beijing,
Shanghai, Guangdong, Hubei, and Sichuan were selected

based on population size, policy strictness, and infection
trajectory variability. All five provinces show strong tem-
poral alignment, especially around epidemic peaks. The
average RMSE for these provinces ranged from 140.5 (Si-
chuan) to 213.7 (Shanghai), and MAPE values remained
below 12%, indicating excellent performance across vary-
ing outbreak scales.

In Beijing, where strict lockdowns were rapidly imple-
mented in response to local surges, the model captured the
rise and fall of the November 2022 wave with remarkable
accuracy. Shanghai’s prolonged multi-phase outbreak
during the first quarter of 2022, characterized by alternat-
ing restrictions and easing, was particularly challenging
to model. Nevertheless, the hybrid model reproduced both
the main peak and minor rebounds. In Hubei, where inter-
ventions were both early and intensive, the model retained
low error throughout the three-year period.

Table 3 provides detailed metrics on peak value deviation
and error scores per province. On average, the model’s
predicted epidemic peaks deviated by less than 5% from
the actual values, and most peak days were correctly iden-
tified within £3 days.

Table 3. Prediction Accuracy by Provinces

Province Actual Peak Predicted Peak RMSE MAPE (%)
Beijing 1365 1402 189.2 10.5
Shanghai 2110 2087 213.7 12.1
Guangdong 1976 1902 165.3 9.8
Sichuan 1733 1755 140.5 8.2

Hubei 2455 2481 172.9 10.9

These findings demonstrate the model’s adaptability in
capturing both sudden surges (as in Guangdong and Bei-
jing) and gradual decays (as in Sichuan), validating its
effectiveness for real-time policy response modelling.

3.3 Temporal Sensitivity and Trend Reproduc-
tion

Different from static models, the hybrid system reacts to
real-time policy shifts and population behavior reflected
in the LSTM-driven B(t). The learned B(t) curves aligned
with major public health announcements. For example,
the strict lockdown policy in the beginning of 2020 will

cause the B drop rapidly. In addition, B rose because of
the relaxation policy in the middle of 2022 and eventually
achieved the peak in the beginning of 2023.

In provinces with delayed policy changes or ineffective
enforcement, such as some inland or backward provinces
or regions, the model still maintained general trend con-
formity, but with slightly higher residual variance.
Significantly, the hybrid model accurately captured
post-intervention decay periods, which are often wrongly
estimated by SEIRD or LSTM alone due to either over-
shooting or memory loss. The integration of mechanistic
feedback (SEIRD) and learned short-term signals (LSTM)
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balanced this behavior effectively.

4. Conclusion

This study explored the possibility of using hybrid ma-
chine learning model to predict the impact of NPIs on
the transmission of COVID-19 in China and evaluate the
difference between the predict accuracy of hybrid model
and static model. In summary, the hybrid SEIRD + LSTM
model achieved high predictive accuracy across both tem-
poral and spatial dimensions. The hybrid model effective-
ly learned from diverse feature inputs to adjust the infec-
tion rate dynamically, aligning with observed case curves
and improving upon classical compartmental models.

The hybrid model’s ability to integrate mechanistic con-
straints with data-driven learning makes it fit for appli-
cations in outbreak forecasting, regional risk assessment,
and public health decision-making. Furthermore, the
insight into variable contributions provides evidence for
prioritizing policy levers that most directly affect trans-
mission dynamics.
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