The application of nanostructure Si materials in lithium-ion anode

Haoyang Li^{1,*}

¹Taiyuan New Oriental School, Taiyuan, China *Corresponding author: 18835358666@163.com

Abstract:

The pursuit of advanced anode materials for energy storage systems has led to significant interest in Sibased alternatives due to their high theoretical capacity. However, each Si nanostructure, nanoparticles, nanowires, and porous/network structures, presents a unique set of advantages and drawbacks that must be balanced for practical application. Si nanoparticles offer a high specific surface area and effective stress relief for volume expansion. Nevertheless, their high interparticle contact resistance and low packing density pose challenges for achieving high volumetric energy densities. Si nanowires provide direct electron transport pathways and inherent stress relief mechanisms. Their robust mechanical anchoring on current collectors also enhances interface stability. However, complex and costly fabrication processes, limited electrolyte infiltration due to high aspect ratios. Si porous/network structures stand out for their engineered void spaces that buffer volume expansion and their 3D-interconnected channels that facilitate rapid ion diffusion. These features made structural integrity and resistance to pulverization. However, the inherently low mass density, complex synthesis methods, and mechanical weakness under prolonged electrochemical stress limit their cycle stability and gravimetric energy density. Strategies may include hybrid structures that combine the benefits of different Si nanostructures, innovative fabrication techniques that reduce costs and improve scalability, and surface coatings or structural modifications that enhance mechanical stability and electrolyte accessibility. Overcoming these technical challenges is crucial for the success of Si anode materials in next-generation batteries, aiming for high-performance, long-lasting, and costeffective energy storage solutions.

Keywords: Si nanostructure; Si nanoparticles; Si nanowires

1. Introduction

The pursuit of superior performance in lithium batteries, particularly for new energy vehicles, drives the success of advanced batteries demanding high energy density, safety, and economic efficiency This has intensified the focus on Silicon (Si)-based anode materials due to their significant advantages over traditional graphite, such as a much higher theoretical specific capacity. These attributes make Si-based anodes highly promising candidates for next-generation high-specific-energy lithium-ion batteries. Furthermore, the advantages of Si-based materials, including their inherent potential for high energy density and theoretical safety, position nano-scale Si-based materials as key to increasing specific surface area and enabling fast-charging capabilities [1].

However, significant challenges hinder the practical application of Si anodes. The fundamental issue is the massive volume expansion (~320%) during lithiation (forming LixSi), which causes severe stress leading to the pulverization of active material particles. This pulverization, coupled with the repeated volume changes, destabilizes the Solid Electrolyte Interphase (SEI) [2]. The expanding Si ruptures the initially formed SEI, exposing fresh Si to the electrolyte, which forms a new SEI layer each cycle. This continuous SEI reformation consumes active lithium ions and electrolyte, increases interfacial resistance, and thickens the SEI layer, ultimately causing rapid capacity decay and shortening battery cycle life. Additionally, the Si exacerbates electrolyte consumption and irreversible capacity loss. Therefore, developing Si-based anode with low cost, simple processes, and comprehensively good electrochemical performance remains a significant challenge for researchers, necessitating a careful balance between performance gains and cost implications [3-5].

This article discusses the implementation schemes of various nano-Si-based materials in the anode materials of new energy vehicle batteries, compares and analyzes the advantages and disadvantages of various materials and synthesis methods, and puts forward its own suggestions, providing theoretical guidance and practical reference for the development of new energy vehicle batteries.

2. Case:

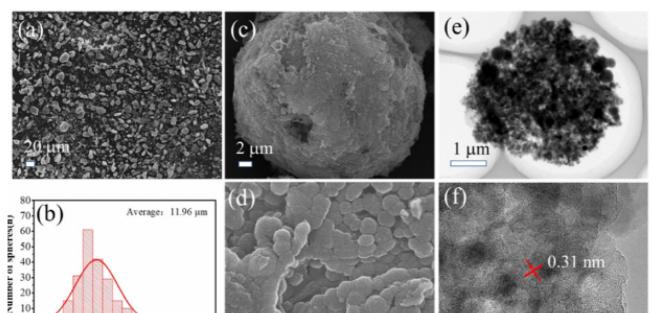
2.1 Si Nanoparticles:

Si nanoparticles are discrete zero-dimensional spheres 10 - 200 nm diameter. Their istropic geometry provides homogeneous stress distribution during volume changes, reducing localized fracture risks. However, the high surface curvature promotes interparticle agglomeration via

van der Waals forces. compromising electrode uniformity. While small size shortens lithium-ion diffusion paths, the absence of intrinsic strain-accommodation mechanisms leaves them vulnerable to cyclic degradation. Crucially, their low dimensionality limits direct electron percolation, necessitating conductive additives for connectivity.

2.2 Si nanowires

Si nanowires are one-dimensional cylinders <100 nm diameter, µm-scale length. Their elongated morphology enables axial electron transport along the wire axis, enhancing electrical conductivity. Radial volume expansion is intrinsically buffered by free surface interfaces perpendicular to the growth direction, mitigating mechanical failure. Yet, the high aspect ratio induces entanglement during electrode processing, creating inhomogeneous ionic pathways. Additionally, surface defect sites along the wire length accelerate parasitic reactions, while mechanical fragility limits bend tolerance in flexible devices.


2.3 Si porous/network

Nanoporous Si features a three-dimensional bicontinuous framework with interconnected pores 10-100 nm. This architecture provides built-in void spaces to accommodate volume expansion isotropically, preserving structural integrity. The open porosity facilitates efficient electrolyte infiltration and ion diffusion. Conversely, the nanoscale pore walls exhibit reduced mechanical strength, risking collapse under extreme stress. High surface area also amplifies interfacial side reactions, and pore occlusion during cycling can impede mass transport. Tunable pore topology allows strain engineering but compromises density.

3. Analysis and Challenge

3.1 Si nanoparticles:

Typical Procedure: Diatomite (1.5 g), aluminum powder (1.2 g), and anhydrous aluminum chloride (AlCl₃, 12 g) were thoroughly mixed in an agate mortar. The mixture was then transferred to a stainless steel autoclave (30 mL). Due to the extreme hygroscopic nature of AlCl₃ in air, all operations were performed inside an argon-filled glove box. Subsequently, the autoclave was placed in a muffle furnace, heated to 250 °C and 300 °C at a ramping rate of 5 °C min⁻¹, respectively, and held at each temperature for 12 hours. After cooling naturally to room temperature, the autoclave was removed. For comparative purposes, a magnesiothermic reduction experiment was conducted by mixing diatomite and magnesium powder at a mass ratio of 1:1 and reacting at 750 °C. The morphology charac-

terization results of the synthesized Si nanoparticles are shown in Figure 1 [6].

Fig. 1 Synthesized Si nanoparticles [6].

200 nm

The electrochemical performance was tested with a button cell shown in Figure 2. The electrochemical reactions during charging/discharging were analyzed by cyclic voltammetry (CV) curves (Figure 2a) at a scan rate of 200 μ V s⁻¹. The potential of the battery ranges from 0.01 to 3 V. During the first discharge, an inconspicuous broad peak appears at about 1.2 V, which occurs only in the first cycle and disappears in subsequent cycles, which is attributed to the formation of the SEI layer. Its disappearance and weaker intensity are due to the formation of a stable SEI layer and a weaker irreversible reaction. During discharge, the two peaks at 0.17 V and 0.01 V indicate a two-step lithiation process for silicon. During subsequent charging,

15 20 25 Diamater(µm)

the peaks that occur at 0.34 V and 0.50 V correspond to the transition from lithium-silicon alloy to amorphous silicon. The area of the curve increases in the next two cycles, indicating that the electrode material is gradually activated. The charge/discharge curves for the first three cycles are shown in Figure 2b. The electrochemical reactions analyzed by the charge/discharge curve are consistent with the results of the CV test. The initial charge/discharge capacity is 3562/2944.9 mAh/g and the initial Coulombic Efficiency (ICE) is 82.7%. ICE reaches its highest value due to the higher degree of reduction and smaller surface area [6].

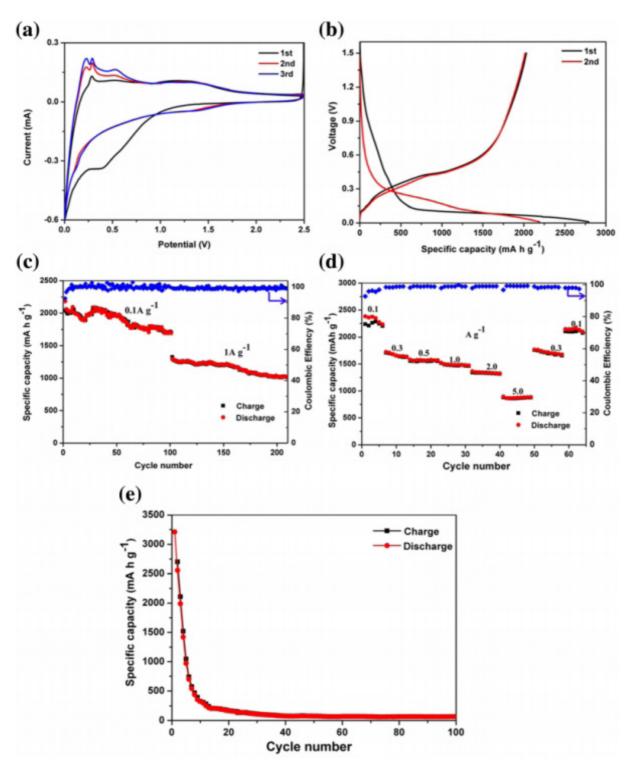


Fig. 2 Electrochemical performance of Si nanoparticles [6]

However, Si nanoparticles face significant challenges primarily due to this repeated swelling/shrinking destabilizes the solid-electrolyte interphase (SEI), causing continuous electrolyte decomposition, irreversible lithium consumption, and rapid capacity fade. Furthermore, their inherently low electrical conductivity necessitates

complex conductive coatings or composites, increasing manufacturing complexity and cost. Nanoparticles also exhibit high surface reactivity, promoting parasitic side reactions with the electrolyte, while their large surface area increases irreversible lithium loss during initial cycling. Agglomeration during cycling and the high expense of na-

noscale synthesis further hinder their practical, large-scale adoption despite their impressive theoretical capacity.

3.2 Si nanowires

Vertical Si nanowires featuring a high aspect ratio exhibit remarkable surface area expansion, resulting in a significantly enlarged electrode-electrolyte interfacial contact region. This enhanced interface promotes superior electrolyte infiltration and improved Li-ion transport kinetics. Moreover, compared to randomly distributed or disordered nanowire arrangements, a well-aligned nanowire array is highly preferred to optimize charge storage efficiency and mitigate performance degradation caused by structural

disorder. The Si nanowires were fabricated via an etching process, as depicted in Figure 3. Importantly, the resulting nanowires directly adhere to the Si substrate, which reinforces the structural robustness of the anode. Figure 3d demonstrates the X-ray diffraction (XRD) patterns of both the pristine Si wafer and the prepared nanowire array. Notably, the diffraction peak at $2\theta = 69.13^{\circ}$ observed for both samples corresponds to the <400> crystallographic orientation, representing the initial reflection of <100>-oriented silicon. This preferential <100> alignment in the Si nanowires facilitates expedited lithium-ion diffusion, thereby effectively suppressing volume expansion during cycling in Si-based anodes [7].

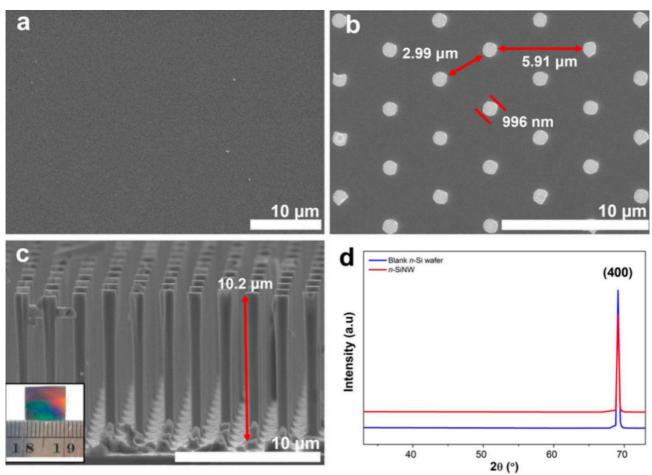


Fig. 3 Top-down fabricated Si nanowires anode with an aspect ratio of~10 compared to an unstructured wafer. [7]

Figure 4 illustrates the rate performance test results of lithium-ion batteries employing bare silicon wafer electrodes and silicon nanowire electrodes at various current densities. At a high discharge rate of 0.2 mA/cm², the battery with the bare silicon wafer electrode retains 57.9% of its discharge capacity at 0.02 mA/cm². When the current

density is reduced back to 0.02 mA/cm², the battery's capacity retention rate is 87.9%. In contrast, the battery with the silicon nanowire electrode maintains a capacity retention rate of 76.7% at 0.2 mA/cm², and when the discharge rate is restored to 0.02 mA/cm², its capacity recovers to 97.1% [7].

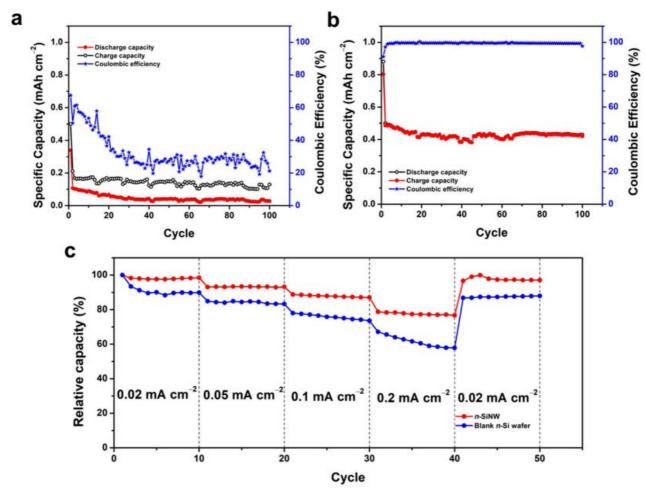


Fig.4 Electrochemical performances of LIBs with blank Si wafer or Si nanowire electrodes. [7] While Si nanowires offer many advantages in some faces, 3.3 Si porous/network

they still face significant challenges. Their high surface area promotes continuous electrolyte decomposition, leading to unstable and growing solid-electrolyte interphase (SEI) layers, irreversible lithium loss, and electrolyte depletion. Mechanical degradation remains an issue, as long nanowires can fracture, detach from the current collector, or become electrically isolated over cycles. Processing difficulties arise from nanowire entanglement, poor packing density (reducing volumetric capacity), and challenges in forming robust electrical connections within the electrode. Furthermore, their synthesis (e.g., via VLS growth) is complex, energy-intensive, and costly, hindering scalability. Low initial Coulombic efficiency due to large surface reactions and intrinsic low electrical conductivity (often requiring coatings/composites) also persist as major drawbacks for practical implementation.

The Typical structure in Figure 5 shows that the sample is composed of interconnected Si particles, resulting in a porous structure. The closely arranged Si⁴⁻ in the micron-sized precursor Mg₂Si reacted with acidic ionic liquid to form Si surrounded by MgCl₂ nanoparticles. The latter were washed away by diluted HCl, leaving interconnected porous Si with vacancies. The porous silicon material exhibits a large BET specific surface area (450 m²/g) and a uniform pore size distribution (1.27 nm), supporting the aforementioned hypothesis. The high-resolution transmission electron microscopy (HRTEM) image shown in Figure 5d reveals clear lattice fringes with a typical d-spacing of 0.31 nm, corresponding to the crystal plane characteristics of cubic silicon, highly consistent with the powder X-ray diffraction (PXRD) results.

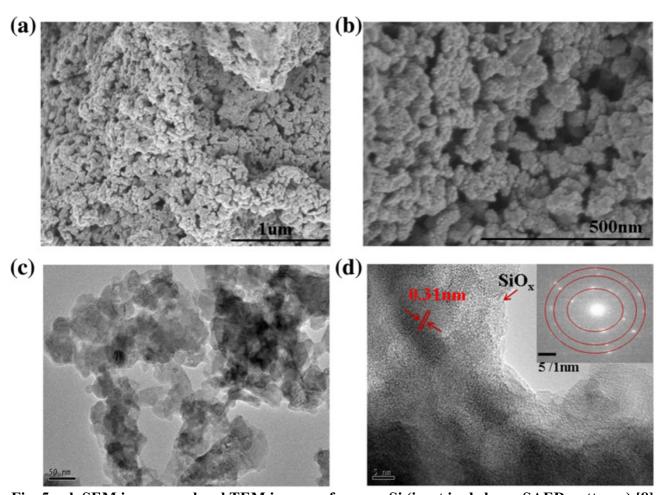


Fig. 5 a, b SEM images and c, d TEM images of porous Si (inset in d shows SAED patterns) [8]

Figure 6 illustrates the cycling performance of the porous silicon composite anode material. The test was conducted in two stages: the first 100 cycles were performed at a current density of 0.1 A g⁻¹, followed by another 100 cycles at a current density of 1 A g⁻¹. After 110 cycles at a current density of 0.1 A g⁻¹, the porous silicon nanocomposite anode retained a capacity of 1720 mAh g⁻¹, corresponding to a capacity retention of 79%. Further testing showed that when subjected to another 110 cycles at a current density of 1 A g⁻¹, the composite electrode exhibited a reversible capacity of 1010 mA h g⁻¹, with a capacity decay rate of only 0.2% per cycle during the 101st to 210th cycles. Figure 6d shows the rate performance of the porous silicon

electrode. The electrode achieved discharge capacities of 2360, 1690, 1570, 1470, 1320, and 850 mA h g⁻¹ at current densities of 0.1, 0.3, 0.5, 1.0, 2.0, and 5.0 A g⁻¹, respectively. When the current density was restored to 0.1 A g⁻¹, the discharge capacity rebounded to approximately 2160 mA h g⁻¹, confirming the excellent electrochemical reversibility of the porous silicon composite anode. In comparison, commercial silicon powder (Figure 2e), even when coated with conductive nitrogen-doped carbon as an anode, despite an initial discharge capacity as high as 3230 mAh g⁻¹, saw its capacity plummet to 110 mA h g⁻¹ after 100 cycles at 0.1 A g⁻¹, indicating a significant capacity decay issue [8].



Fig. 6 Electrical performance of the pSi@NC composite electrode [8]

Overall, Si porous/network structures, face significant challenges including inherent mechanical fragility leading to pore collapse and structural degradation over extended cycling. Their ultra-high surface area accelerates parasitic reactions with the electrolyte, resulting in thick, unstable solid-electrolyte interphase (SEI) formation, severe irre-

versible lithium loss (especially during initial cycles), and continuous electrolyte consumption. Precise control over pore size/distribution is difficult to scale, and synthesis methods (e.g., etching, templating, magnesiothermic reduction) are often complex, expensive, and energy-intensive. Residual oxides or impurities from processing can hinder conductivity and lithium diffusion. Furthermore, achieving high volumetric energy density is challenging

due to low active material packing, and integrating these delicate structures into robust, conductive electrodes without compromising porosity or causing particle isolation remains difficult.

4. Summary and Suggestion

Table. 1 Comparation of various nano-Si anodes

Туре	advantages	disadvantages
Si-NPs	-High specific surface area enhances reaction kineticsNanoscale size effectively mitigates volume expansion stress.	-High interparticle contact resistance Low tapped density reduces volumetric energy density.
Si-NWs	-Axial expansion releases mechanical stressStable interface formation with current collectors.	-Complex fabrication and high production costHigh aspect ratio limits electrolyte infiltration.
Porous/Networked Si	-Pore networks buffer volume expansionStructural integrity enhances cycling stability.	-Low mass density compromises gravimetric energy densityComplex synthesis with poor reproducibility.

The advantages and disadvantages of nano-Si anodes were concluded and shown in Table. 1. Si nanoparticles offer significant advantages including a high specific surface area that enhances electrochemical reaction kinetics, effective buffering of volume expansion stress due to nanoscale dimensions, and scalable synthesis with potential for uniform dispersion in composite electrodes. However, they suffer from critical drawbacks: high interparticle contact resistance necessitating extensive conductive additives, low packing density that severely compromises volumetric energy density, and tendency for cyclic aggregation during repeated lithiation/delithiation, accelerating mechanical degradation and capacity fading.

Si nanowires offer compelling advantages, including direct 1D electron transport pathways that minimize electrical resistance, inherent axial stress relief enabling free radial expansion to mitigate fracture, and robust mechanical anchoring when grown directly on current collectors for enhanced interface stability. However, they exhibit critical limitations: complex and costly fabrication(e.g., VLS growth) hindering scalable production, compromised electrolyte infiltration due to high aspect ratios limiting ion access to deep regions, and mechanical fragility causing bending/fracture under cyclic stress, which degrades electrical connectivity and cycle life.

Si porous/network structures deliver key advantages through their engineered void spaces that effectively buffer volume expansion, 3D-interconnected channels enabling rapid ion diffusion kinetics, and enhanced structural integrity that resists pulverization during cycling. However, these architectures face significant trade-offs: low mass density inherently compromises gravimetric energy density, complex synthesis methods (e.g., dealloying/etching) suffer from poor reproducibility and scalability, and inherent mechanical weakness increases vulnerability to bulk structural collapse under prolonged electrochemical stress, ultimately limiting cycle stability.

5. Conclusion

In conclude, Si nanoparticles, nanowires, and porous/ network structures each present unique advantages and critical drawbacks that must be carefully considered in the context of their application in energy storage systems. Si nanoparticles offer a high specific surface area and effective buffering of volume expansion stress, which are beneficial for enhancing electrochemical reaction kinetics and maintaining structural integrity during cycling. However, their high interparticle contact resistance and low packing density pose significant challenges to achieving high volumetric energy densities and necessitate the use of extensive conductive additives. Si nanowires, on the other hand, provide direct electron transport pathways and inherent stress relief mechanisms that can minimize electrical resistance and mitigate fracture during cycling. Their robust mechanical anchoring on current collectors further enhances interface stability. Nevertheless, the complex and costly fabrication processes, limited electro-

lyte infiltration due to high aspect ratios, and mechanical fragility under cyclic stress are substantial barriers to their widespread adoption.Si porous/network structures stand out for their engineered void spaces that buffer volume expansion and their 3D-interconnected channels that facilitate rapid ion diffusion. These features contribute to enhanced structural integrity and resistance to pulverization. However, the inherently low mass density, complex synthesis methods, and mechanical weakness under prolonged electrochemical stress limit their cycle stability and gravimetric energy density. The future development of Si-based anode materials should focus on optimizing the balance between these advantages and drawbacks. Potential strategies may include hybrid structures that combine the benefits of nanoparticles, nanowires, and porous/network architectures, innovative fabrication techniques that reduce costs and improve scalability, and surface coatings or structural modifications that enhance mechanical stability and electrolyte accessibility. Ultimately, the success of Si anode materials in next-generation batteries will depend on overcoming these technical challenges to achieve high-performance, long-lasting, and cost-effective energy storage solutions.

References

[1] Peng, J., Li, W., Wu, Z., Li, H., Zeng, P., Yang, J., ... & Wang, X. (2022). Engineering Si-based anode materials with homogeneous distribution of SiO x and carbon for lithium-ion batteries. Energy & Fuels, 36(10), 5465-5474.

- [2] Gan, C., Zhang, C., Wen, W., Liu, Y., Chen, J., Xie, Q., & Luo, X. (2019). Enhancing delithiation reversibility of Li15Si4 alloy of silicon nanoparticles-carbon/graphite anode materials for stable-cycling lithium ion batteries by restricting the silicon particle size. ACS applied materials & interfaces, 11(39), 35809-35819.
- [3] Wang, F., Hu, Z., Mao, L., & Mao, J. (2020). Nano-silicon@ soft carbon embedded in graphene scaffold: High-performance 3D free-standing anode for lithium-ion batteries. Journal of Power Sources, 450, 227692.
- [4] Yuan, H.; Williams, R. S. Solid-phase equilibria for metalSioxygen ternary systems. 1. Magnesium, calcium, strontium and barium. Chem. Mater. 1990, 2, 695–700
- [5] Ou, J.; Jin, F.; Wang, H.; Wu, S.; Zhang, H. Carbon coated Si nanoparticles anchored to graphene sheets with excellent cycle performance and rate capability for Lithium-ion battery anodes. Surf. Coat. Technol. 2021, 418, No. 127262
- [6] Wang, D., Zhang, D., Dong, Y., Lin, X., Liu, R., Li, A., ... & Song, H. (2021). Reconstructed nano-Si assembled microsphere via molten salt-assisted low-temperature aluminothermic reduction of diatomite as high-performance anodes for lithiumion batteries. ACS Applied Energy Materials, 4(6), 6146-6153.
- [7] Nugroho, A. P., Hawari, N. H., Prakoso, B., Refino, A. D., Yulianto, N., Iskandar, F., ... & Sumboja, A. (2021). Vertically aligned n-type silicon nanowire array as a free-standing anode for lithium-ion batteries. Nanomaterials, 11(11), 3137.
- [8] Wang, F., Zhao, B., Zi, W., & Du, H. (2019). Ionothermal synthesis of crystalline nanoporous silicon and its use as anode materials in lithium-ion batteries. Nanoscale Research Letters, 14(1), 196.