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Abstract:

This paper systematically traces the evolutionary trajectory
of the YOLO series (versions 1 through 12) within the field
of computer vision object detection. Pioneered by YOLOvI
in 2015, this framework introduced the groundbreaking
single-stage detection and regression paradigm, enabling
end-to-end detection through its SxS grid architecture.
Its Fast YOLO variant demonstrated notable real-time
performance advantages on the PASCAL VOC dataset.
Subsequent iterations marked significant advancements:
v2 incorporated batch normalization and anchor priors,
enhancing efficiency with the Darknet-19 backbone
while YOLO9000 expanded multi-category recognition
capabilities; v3 optimized accuracy through Darknet-53
and multi-scale feature fusion; v4 formalized the modular
“Backbone-Neck-Head” design. Enhancements continued
from v8 to v12—v8’s C2f module bolstered feature
fusion, v9 addressed gradient misalignment via its PGI
framework, v10 achieved NMS-free end-to-end detection,
v1l improved efficiency with the C3k2 module, and
v12 enhanced real-time capabilities via the R-ELAN
structure. Through iterative development, the series
exhibits substantial improvements in detection speed,
accuracy, and adaptability to complex scenarios, securing
its position as a mainstream solution. Future applications
hold considerable promise for leveraging this technology
in demanding contexts such as embodied intelligence,
medical diagnostics, and tunnel inspection.

Keywords: Convolutional Neural Networks; sin-
gle-stage object detection; YOLO; algorithms.

1. Introduction

intelligence, aims to construct semantic understand-
ing systems for images and videos. Object detection

Computer vision, as a pivotal domain of artificial algorithms identify object categories and spatially
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localize targets, quantitatively represented with bounding
boxes, thus enabling extensive applications in intelligent
surveillance, autonomous driving, and related fields.

Early object detection methods relied on handcrafted fea-
tures. Limited by inadequate feature representation and
computational inefficiency, these approaches struggled to
satisfy demands for both detection accuracy and real-time
performance in complex scenarios. Convolutional Neural
Networks propelled revolutionary breakthroughs in object
detection. The YOLO series algorithms, characterized by
their single-stage detection framework and operational
efficiency, have spurred extensive research and industrial
adoption.

Since the introduction of YOLOvVI in 2015, the series has
evolved through twelve iterations. Each generation refined
network architectures and training methodologies, achiev-
ing substantial enhancements in detection speed, accuracy,
and adaptability to intricate environments. These advance-
ments solidified YOLO’s mainstream dominance in ob-
ject detection. Systematically organizing its evolutionary
trajectory is essential for distilling algorithmic design
principles and guiding future innovations—carrying sig-
nificant theoretical and practical implications. This review
comprehensively examines YOLOvI to YOLOv12, with
a focus on core innovations, performance optimization
strategies, and scholarly contributions.

2. Evolutionary Trajectory of YOLO

YOLOVI pioneered an end-to-end, single-stage detection
framework by dividing images into SXS grids and directly
regressing target class probabilities along with bounding
box coordinates, eliminating the region proposal genera-
tion inherent to two-stage detectors. Its Fast YOLO vari-
ant achieved 52.7% mAP on PASCAL VOC with a 9-layer
network, doubling the inference speed of contemporary
approaches. The standard version elevated mAP to 63.4%
[1], achieving the first effective balance between detection
accuracy and real-time capability. Limitations included
each grid predicting only two objects of the same class,
insufficient anchor generalization, and constrained perfor-
mance in dense scenes.

YOLOV2 (2017) enhanced convergence stability via batch
normalization and addressed cross-resolution adaptation
through iterative fine-tuning at 448x448 resolution, yield-
ing mAP improvements of 2% and 4% respectively [2].
Its fully convolutional architecture accepted inputs at any
resolution divisible by 32. K-means clustering generated
five anchor priors, substantially increasing recall. Feature
fusion through a passthrough layer improved small object
detection. The Darknet-19 backbone attained 72.9% Top-1
accuracy on ImageNet [2], while its enhanced YOLO9000

version detected over 9,000 object categories, establishing
foundational capabilities for multi-class recognition.
YOLOvV3 (2018) employed a 53-layer convolutional
backbone, Darknet-53, which improved computational
efficiency via residual connections and strided convolu-
tions, achieving 77.2% Top-1 accuracy at 256x256 reso-
lution [3]. It incorporated feature pyramid structures [4]
for anchor-based detection and feature fusion across three
scales. Logistic regression replaced SoftMax for multi-la-
bel classification support. Processing 320x320 images re-
quired only 22ms, matching SSD in mAP while operating
three times faster [3], constituting a major milestone in
real-time detection.

YOLOV4 formalized the modular “Backbone-Neck-Head”
architecture. The CSPDarknet-53 backbone reduced com-
putation via cross-stage connections. Its neck integrated
Spatial Pyramid Pooling—SPP and PANet for enhanced
multi-scale feature fusion. The detection head maintained
anchor-based mechanisms with optimized Non-Maximum
Suppression (NMS) post-processing. Proposed strategies
included a “Bag of Freebies” (Mosaic augmentation,
CloU loss) and structural improvements, achieving 43.5%
AP with 50 FPS inference on the COCO dataset [5] and
surpassing contemporary detectors.

YOLOvVS5 migrated implementation to PyTorch, intro-
ducing AutoAnchor for automated anchor calibration
[6]. YOLOX (an evolution of v3) adopted an anchor-free
mechanism, elevating AP by 5.9% [7]. YOLOv6 uti-
lized scale-differentiated designs (RepVGG backbone,
Rep-PAN neck) enabling adaptation across scenarios
from 35.9% AP (1234 FPS) to 57.2% AP (29 FPS) [8].
YOLOV7 introduced an E-ELAN architecture and com-
pound scaling, reducing parameters by 39% versus v4-tiny
while attaining 56.8% AP at >30 FPS on GPUs [9], thus
overcoming edge deployment constraints.

YOLOVS launched multi-scale variants with optimized
CSPLayers and C2f modules. Its anchor-free head com-
bined with Distribution Focal Loss (DFL) improved
small object detection, yielding 53.9% AP at 280 FPS
for YOLOv8X [10]. YOLOVY proposed a Programmable
Gradient Information (PGI) framework to mitigate deep
network information bottlenecks, reducing parameters by
16% and computations by 27% while increasing AP by
1.7% [11]. YOLOV10 achieved end-to-end detection with-
out NMS dependency, delivering 1.8% faster inference
than RT-DETR-R18 [12]. YOLOv11 utilized C3k2 mod-
ules and a C2PSA mechanism to maintain ~47% accuracy
in the 2-6ms low-latency range [13]. The latest YOLOv12
employs an R-ELAN backbone optimized with 7x7 sep-
arable convolutions and FlashAttention, reaching 49%
mAP50-95 at 1-5ms latency [14], setting new bench-
marks for complex real-time detection.



The YOLO series demonstrates a sustained evolution—
shifting from anchor dependency to anchor-free designs,
single-scale to multi-scale fusion, and fundamental aug-
mentation to sophisticated label assignment. Through suc-
cessive iterations, the algorithm progressively enhanced
both detection accuracy and operational speed, as sub-
stantiated in Table 1. This progression also establishes a
comprehensive technological ecosystem spanning edge to
cloud deployments.

3. Core Architecture Analysis

3.1 YOLOv1

YOLO (You Only Look Once) completes detection tasks
through a single network evaluation pass, fundamentally
differentiating itself from earlier approaches. Previous
methods typically adapted classifiers using sliding win-
dows, requiring hundreds to thousands of image evalua-
tions, or employed two-stage detection involving initial
region proposal generation followed by classification.
YOLO instead adopts a regression-based framework to di-
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rectly predict detection outcomes, as illustrated in Figure 1.
This approach demonstrates superior generalization across
domains compared to alternative detectors.

Within the YOLOvV1 architecture, holistic contextual
representations facilitate concurrent determination of all
bounding box coordinates and their co-associated class
probabilities. The system divides input images into an
SxS grid, assigning grid cells responsibility for detecting
objects centered within them. Interleaved 1x1 convolu-
tional layers reduce feature dimensionality.

A Fast YOLO variant warrants discussion for pushing the
boundaries of rapid target detection. This version employs
a streamlined 9-layer convolutional neural network while
retaining all original training and testing parameters.
Evaluated on the PASCAL dataset, Fast YOLO achieved
unprecedented speed as the fastest object detector of its
era. Experimental results demonstrate it doubled the speed
of prior real-time detection models while maintaining
52.7% mean average precision[1]. The standard YOLO
algorithm further advanced detection accuracy, achieving
63.4% mAP while preserving real-time efficiency[1].
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Fig.1 YOLOV1 Architecture Diagram Schematic

Notable limitations of YOLOv1 include its restriction of
detecting only two objects of the same class per grid cell,
constraining performance in complex scenes with proxi-
mal objects. The model exhibits reduced efficiency when
detecting objects with aspect ratios absent from training
data. Independent bounding box predictions per grid cell
also impede accurate localization of adjacent or overlap-
ping objects.

3.2 YOLOv4

The year 2020 marked a watershed for the industrial de-
ployment of YOLO architecture. YOLOv4 emerged as
a high-precision object detection model optimized for
real-time execution on conventional GPUs. This iteration
introduced enhancements across network architecture,

training protocols, and data augmentation relative to its
predecessor, systematically optimizing the speed-accuracy
tradeoff through empirical evaluation of multiple refine-
ments. During this phase, the detector architecture was
formally redefined through a novel conceptual framework
comprising Backbone, Neck, and Head modules[5], as
illustrated in Figure 2.

The Backbone serves as the core feature extractor, utiliz-
ing CNN architecture pre-trained on Large-cardinality im-
age classification tasks such as ImageNet. It hierarchically
captures multi-scale features—shallow layers extract el-
ementary textures and edges, while deeper layers discern
high-level semantics and object components.

Functioning as the bridge between Backbone and Head,
the Neck architecture aggregates and refines multi-level
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features via custom convolutional layers or feature pyra-
mid networks. It specifically enhances spatial dependen-
cies and semantic representations across scales.

The Head module executes prediction tasks using features
propagated from Backbone and Neck. Its sub-networks
specialize in distinct functionalities (classification, lo-
calization, instance segmentation) to generate detection
outputs for candidate objects. Non-Maximum Suppression
(NMS) filters redundant predictions during post-process-
ing, retaining only the highest-confidence detections.
Building upon CSPDarknet-53’s demonstrated efficacy
in YOLOvV3, YOLOvV4 retained this architecture for its
Backbone. The Neck incorporated a SPP module to ex-
pand receptive fields and employed PANet for feature ag-
gregation, replacing YOLOv3’s FPN—supplemented by a
Spatial Attention Module (SAM) [5]. The detection Head
maintained YOLOv3’s anchor-based mechanism. The
CSPNet configuration reduced computational load with-
out compromising accuracy, while the SPP block enlarged
receptive fields without impacting inference speed.
Notably, YOLOvV4 pioneered the complementary “Bag-
of-Freebies” and “Bag-of-Specials” strategies. The for-
mer boosted training efficacy via mosaic augmentation
(four-image composition) and CloU loss optimization;
the latter leveraged the CSPDarknet53 Backbone and SP-
P+PANet Neck structure [5].

On the COCO 2017 dataset, YOLOv4 attained 43.5% AP
and 65.7% AP50 while exceeding 50 FPS on NVIDIA
V100 GPUs [5], surpassing other empirically leading de-
tectors in both speed and precision metrics.
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Fig. 2 “Backbone-Neck-Head” Architecture
Diagram Schematic

3.3 YOLOv12

As the latest iteration of the YOLO algorithms launched
in 2025, YOLOV12 incorporates key architectural en-
hancements such as FlashAttention, adaptive MLP ratios,

and refined convolution strategies. These innovations
overcome the challenge faced by its predecessor v11 in
maintaining high throughput under stringent hardware
constraints. Its schematic architecture is depicted in Fig-
ure 3.

The core architectural innovation lies in the redesigned
backbone network, which implements the novel R-ELAN
structure. This architectural reformulation integrates
deeper convolutional hierarchies with engineered residual
connections, effectively mitigating gradient dissipation
bottlenecks while enhancing feature reuse efficacy, con-
sequently elevating discriminative capacity for intricate
object details across multi-scale and geometrically varied
contexts[ 14].

Further computational efficiency is achieved through 7x7
separable convolutions, which preserve spatial context
while utilizing fewer parameters compared to conven-
tional large-kernel operations or positional encodings
[14]. Additionally, partitioning feature maps into distinct
regions and applying FlashAttention routines significantly
reduces both memory transfers and computational over-
head. This optimization enables real-time inference even
at substantially elevated input resolutions.

Aligning with YOLOv11’s approach, YOLOv12 offers
multiple scaled variants tailored to different computation-
al capabilities and performance requirements. Smaller
variants (e.g., 12n and 12s) excel in latency-sensitive ap-
plications, while the larger variant (12x) maintains high
precision or complex scenarios [14].

Comparative evaluations confirm that YOLOv12 consis-
tently surpasses YOLOv10 and YOLOv1I1 in both mAP
and detection speed. Notably, within the critical low-la-
tency regime (1-5 ms), the YOLOV12s variant sustains an
mAPS50-95 accuracy of approximately 49% [14].
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Fig. 3 YOLOvV12 Architecture Diagram
Schematic



4. Conclusion and future prospects

This review traces the technical evolution of the YOLO
series in computer vision. Commencing with YOLOv1’s
foundational single-stage detection and regression out-
put, through to the latest architectural enhancements in
YOLOVI2 illustrated in Table 1 successive versions have
achieved concurrent gains in accuracy and speed. These
improvements have consistently focused on refining
network architectures, training strategies, feature fusion
mechanisms, and loss functions. YOLOvV2 introduced
performance-boosting elements like batch normalization
and anchor priors; YOLOv3 expanded convolutional lay-
ers and refined anchor assignment strategies; YOLOv4
adopted a novel architectural description and incorporated
diverse optimization techniques. Subsequent versions,
including v8, v9, v10, vl1, and v12, respectively made
breakthroughs in areas such as architectural design, com-
putational efficiency, and real-time capability. Through
multi-generational advancement, the YOLO series has
achieved marked improvements in critical metrics—
detection speed, precision, and adaptability to complex
scenes—solidifying its mainstream status in object detec-
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tion.

Looking forward, YOLO holds significant potential for
broader deployment in complex scenarios and diverse ap-
plications. Key future directions include:

Embodied Intelligence: Projects like BEHAVIOR demon-
strate frameworks integrating YOLO with robotic sys-
tems, pushing detection capabilities into the action dimen-
sion via visual perception-decision-execution loops.
Medical Detection: YOLO exhibits robust detection ca-
pabilities across multiple medical domains, including
skin lesion classification and cardiac anomaly detection.
Its utility extends to surgical instrument detection and
tracking, enhancing procedural safety and efficiency [15].
Future efforts may focus on developing dedicated YOLO
variants tailored for medical detection applications.

Crater Detection: The YOLO v8 platform has facilitated
the creation, training, and deployment of models for lunar
crater detection [16], with promising prospects for contin-
ued application in this domain.

Table.1 Performance Comparison Schematic of YOLOv1
to v12

Version Year Accuracy Metric Speed Metric Efficiency Improvements

V1 2015 63.4% mAP(standard), 52.7% mAP | 2x faster than contemporar- i
B (Fast) ies

V2 2017 72.9% Top-1, +4% mAP - Reduced computation

V3 2018 77.2% Top-1 22ms (320%320) Superior to ResNet

V_4 2020 43.5% AP, 65.7% AP50 >50 FPS Cross-stage connections

VS5 2020 - - -

X 2021 +5.9% AP - -

V 6 2022 35.9%-57.2% AP 29-1234 FPS Quantization support

V.7 2022 56.8% AP >30 FPS 39% fewer params

V_ 8 2023 53.9% AP (v8X) 280 FPS (v8X) -

v 9 2024 +1.7% AP i 16% feV\{er params, 27% less
- computation

V_10 2024 - 1.8x RT-DETR-R18 Lightweight design

V_11 2024 ~47% accuracy 2-6ms latency -

Vv 12 2025 49% mAP50-95 1-5ms latency 7x7 separable convolutions

References [3] REDMON J, FARHADI A. YOLOvV3: An Incremental

[1] REDMON J, DIVVALA S, GIRSHICK R, etc. You Only
Look Once: Unified, Real-Time Object Detection[J/OL]. arXiv
preprint arXiv:1506.02640, 2015.

[2] REDMON J, FARHADI A. YOLO9000: Better, Faster,
Stronger[C]//Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017: 7263-7271.

Improvement[J/OL]. arXiv preprint arXiv:1804.02767, 2018.

[4] LIN T'Y, DOLLAR P, GIRSHICK R, etc. Feature Pyramid
Networks for Object Detection[C]//Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017:
2117-2125.

[5] BOCHKOVSKIY A, WANG C Y, LIAO H'Y M. YOLOv4:
Optimal Speed and Accuracy of Object Detection[J/OL]. arXiv



Dean&Francis

ISSN 2959-6157

preprint arXiv:2004.10934, 2020.

[6] DO T. Evolution of YOLO algorithm and YOLOvVS: The
state-of-the-art object detection algorithm[D]. Oulu: Oulu
University of Applied Sciences, 2021.

[7] GE Z, LIU S, WANG F, et al. YOLOX: Exceeding YOLO
series in 2021[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021: 8377-8386.

[8] LI C, LI L, JIANG H, et al. YOLOVG6: A single-stage object
detection framework for industrial applications[J]. arXiv preprint
arXiv:2209.02976, 2022.

[9] WANG C Y, BOCHKOVSKIY A, LIAO HY M. YOLOvV7:
Trainable bag-of-freebies sets new state-of-the-art for real-time
object detectors[C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2023: 7464-7475.
[10] HUSSAIN M. YOLOV1 to v8: Unveiling each variant—
A comprehensive review of YOLO[J]. IEEE Access, 2024, 12:

40573-40627. DOI: 10.1109/ACCESS.2024.3378568.

[11] WANG C Y, YEHIH, LIAO HY M. YOLOV9: Learning
what you want to learn using programmable gradient
information[J]. arXiv preprint arXiv:2402.13616, 2024.

[12] WANG A, CHEN H, LIU L, et al. YOLOv10: Real-time
end-to-end object detection[J/OL]. 2024.

[13] KHANAM R, HUSSAIN M. YOLOvVI11: An overview of
the key architectural enhancements[J/OL]. 2024.

[14] ALIF M A R, HUSSAIN M. YOLOv12: A breakdown of
the key architectural features[J/OL]. 2025.

[15] RAGAB M G, ABDULKADIR S J, MUNEER A, et al. A
comprehensive systematic review of YOLO for medical object
detection (2018 to 2023)[J]. IEEE Access, 2023.

[16] ZHANG W, GOODWILL J, CHASE T, et al. Evaluation
and integration of YOLO models for autonomous crater
detection[C]//IEEE Aerospace Conference. 2024.





