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Abstract:

Recent advances in intelligent sensors coupled with next-
generation interface technologies have made motion
intention recognition a foundational technology for
assistive systems—including prosthetic controllers,
exoskeleton walkers, and rehabilitation devices. Focusing
on deep learning applications, this review examines
current developments in motion intention recognition
across different countries, covering both signal analysis
and behavioral pattern identification. By comparing the
advantages and disadvantages of different signal types
(such as electromyographic signals, muscle pressure
signals, inertial sensor signals, etc.) and recognition
algorithms (traditional machine learning and deep neural
networks), the significant advantages of deep learning
in improving recognition accuracy and adaptability are
revealed. Additionally, by reviewing recent representative
achievements, the practical deployment of motion intention
recognition technology in lower-limb exoskeletons
and prosthetic systems is discussed. Finally, the main
challenges in current research, such as signal heterogeneity,
individual user differences, and model generalization
ability, are summarized, and future development directions
based on multimodal fusion and transfer learning are
envisioned.

Keywords: Motion intention recognition; deep learning;
convolutional neural networks; electromyographic sig-

nals; human-computer interaction.

1. Introduction

During the rencent past, with the acceleration of an

human motion intentions through intelligent assistive
devices has become a hot topic in the interdisciplin-
ary research of biomedical engineering and artificial

aging society and the growing demand for rehabil- intelligence.

itation, how to efficiently recognize and respond to

Motion intention recognition studies have progressed
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from conventional machine learning approaches to fully
integrated deep learning architectures, establishing a ro-
bust theoretical foundation for rehabilitative therapies and
smart prosthetic systems. Domestic research started with
multi-source data fusion. Cao Xianghong et al. (2017)
constructed a multimodal gait recognition system based
on hip joint angle, acceleration, and foot pressure. By
using kernel principal component analysis and extreme
learning machines, they achieved a recognition accuracy
of 96.78% for six gait types with a response time of 0.52
seconds, although there is still room for improvement in
feature extraction speed and computational complexi-
ty[1]. Ni Yu and Su Benyue (2020) proposed a lower-limb
prosthesis intention recognition model that combines con-
volutional neural networks with LSTM. After removing
manual feature selection, the accuracy surpassed tradition-
al methods, highlighting the advantages of deep feature
learning[2]. Liu Shuangqing (2019) developed an end-to-
end LSTM framework using single inertial sensor data,
dividing gait into steady-state and transitional-state cate-
gories. The model achieved over 96% accuracy in large-
scale complex scenarios[3].

In terms of technology classification, Cao Menglin and
others (2021) conducted a systematic review, dividing
motion intention detection into three categories: skeletal
model-driven, traditional statistical learning, and deep
neural networks. They pointed out that surface electro-
myographic signals alone cannot accurately express in-
tentions and emphasized the need to balance accuracy and
low latency to meet clinical demands[4].The latest review,
written by Chen Weicong and Lai Changsheng (2025),
provides a comprehensive review of the application of
surface ./electromyography and electroencephalography
in rehabilitation robots. It deeply analyzes the challenges
in data acquisition, model compression efficiency, and
cross-scenario adaptability, pointing out directions for fu-
ture research[5].

Significant achievements have been made abroad in the
fields of exoskeletons and human-machine collaboration.
Zhang et al. (2025) evaluated the performance of tradi-
tional feature extraction combined with deep learning strat-
egies in SEMG signals, demonstrating that multi-source
fusion can significantly improve stability and accuracy
under noise[6]. Abidi (2024) combined multimodal data
from EEG and EMG to construct an AH-CNN+LSTM
model and introduced residual connections, significantly
improving the intention prediction accuracy and anti-in-
terference ability for patients with motor disorders[7].
Minguez et al. (2018) used a Gaussian process dynamic
model to predict pedestrian start-stop intentions, showing

prospective advantages with small sample sets. Long et
al. (2018) combined sparse Gaussian process regression
with fuzzy PID control to achieve precise tracking of exo-
skeleton devices on complex terrains, although real-time
response performance still needs improvement[8].

In the field of human-machine collaboration, Smith et
al. (2023) discussed the algorithmic fairness and privacy
protection in assistive walking technologies at the macro
level, advocating for the establishment of multimodal
datasets and enhanced algorithm transparency to reduce
system bias[9]. Petkovi¢ (2019) combined HMM and the-
ory of mind to analyze worker behavior patterns and de-
sign dynamic obstacle avoidance strategies, improving the
safety and efficiency of warehouse robots, although its re-
liance on augmented reality devices limits its widespread
adoption[10]. Liu et al. (2019) proposed a video-driven
CNN-+LSTM hybrid architecture, achieving 83% action
recognition accuracy in scenarios without wearable devic-
es. Park (2019) integrated offline pretraining and online
decision-making with the I-planner, realizing dynamic
behavior trajectory modeling and safe path planning[11].
Park (2019) integrated offline pretraining and online
decision-making with the I-planner, realizing dynamic
behavior trajectory modeling and safe path planning[12].
Wang (2021) designed a multimodal learning architecture
for hand interaction tasks, integrating voice commands
with sensor data and using extreme learning machines
to achieve real-time model updates[13]. Grabhof (2023)
used LSTM to process low-quality videos and generate
motion sequences, providing solutions for low-cost de-
vices, though the robustness of long-term predictions still
requires further validation[14].

Overall, scholars both domestically and internationally
have conducted extensive research on the acquisition
and modeling of multimodal signals such as bioelectric,
visual, and linguistic signals, striving to strike a balance
between performance optimization and application value.
Future efforts should focus on improving cross-scenario
adaptability, model compression and acceleration, as well
as generalization ability with small samples, to further
advance the development of human-machine collaborative
intelligence.

2. Signal sources and acquisition meth-
ods Section Headings

The realization of motion intention recognition relies on
the accurate acquisition of human movement, physiologi-
cal, or neural signals. The most frequently employed sig-
nal types are summarized in table 1.
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Table 1. Comparing the four Signal Types
Si 1| Typical S /Devic-
P8 a ) TpIeal SCISOIsTIeve Acquisition Principle Advantages Limitations
Type es
. ) Good timeliness in reflecting mus- .
Adhesive dry/wet elec- | Electrodes detect potential changes . i g. Easily affected
sEMG ) cle activation intentions; suitable . )
trodes caused by muscle fiber discharge : by skin resistance
for real-time control
. . |Monitors small changes in pressure . Not sensitive
Muscle|Force-sensitive resis- . & P 4 Comfortable to wear; high tolerance v
on the skin surface due to muscle ex- . . . to small move-
Pressure | tors (FSR) . to position; relatively low noise
pansion ments;
. . ) High accuracy with large movement | Difficult to di-
Three-axis accelerome- | Captures angular velocity, linear ac- . . .
IMU . amplitudes; easy to integrate into |[rectly capture
ter + Gyroscope celeration, and posture angle changes . . :
wearable devices intention
. Records oscillations in different fre- | Can capture intention signals before | Signals are eas-
Multi-channel dry/wet . . . . . .
EEG quency bands of the electroencepha- | movement; rich high-dimensional |ily disturbed by
electrode helmets . . .
logram information noise
. . . Slightly better spatial localization | __.
Head-worn optical fiber | Measures changes in brain oxygen i p .. |Higher response
fNIRS . than EEG; sensitive to cognitive
probes concentration load delay

Among them, sEMG and IMU are currently the most
widely used combination. Previous studies (e.g., Niu
Miaohu et al. [15]) have achieved high-precision gait state
classification by using convolutional neural networks
for multi-scale feature extraction of SEMG time-series
signals. The combination of muscle pressure signals and
IMU (e.g., Du Yancheng et al. [16]) has shown good
adaptability and practicality.

3. Deep learning methods in motion in-
tention recognition

Owing to their exceptional capacity for feature extraction
and nonlinear representation, deep learning approaches
have exhibited outstanding efficacy in decoding move-
ment intentions. The following discussion will focus on
three aspects: model types, structural design, and fusion
methods. Fig. 1 shows the flow chart of the Deep Learn-
ing Methods.
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Fig 1. The flow chart of the Deep Learning Methods

3.1 Model Types and Structures

Common deep learning models include:

Convolutional Neural Networks (CNN): CNNs have
strong local feature extraction capabilities for 2D or
time-series signals, making them suitable for electromy-
ography (EMG) or sensor matrix signals.

Long Short-Term Memory Networks (LSTM): LSTMs are
superior for modeling time series, as they can capture the
temporal relationships of movements, making them highly
effective for motion prediction tasks.

Transformer Architecture: In recent years, transformers
have shown superior capabilities in sequence modeling,
surpassing LSTM, especially for modeling long-term de-
pendencies. This approach is still in the introduction phase
for motion intention recognition.

Multichannel Fusion Networks: These networks are used
to fuse multiple heterogeneous signals, such as EMG and

IMU data, in both spatial and temporal dimensions.

For example, in literature [15], A deep learning model
utilizing convolutional networks is introduced to perceive
motion intentions at multiple scales, as shown in the fig-
ure below. This model effectively extracts muscle activity
features at different time scales, enhancing the robustness
of recognition.

3.2 Signal fusion methods

Deep learning is also widely used in the design of signal
fusion strategies, including:

Early Fusion (Data Level): The signals from various sen-
sors are concatenated into a unified input. Mid Fusion
(Feature Level): Features are extracted from each signal
individually and then combined. Late Fusion (Decision
Level): Each model independently classifies the signals,
and then weighted voting or decision-making is per-



formed. Table 2 shows the comparison of common fusion

Dean&Francis

QINGYU RUI

strategies.

Table 2. The comparison of common fusion strategies

Fusion Method Advantages

Disadvantages

Data-level Fusion

Simple to implement, complete data

Difficulty in coordinating scale differenc-
es

Feature-level Fusion

Rich in information, stable performance

Complex network design

Decision-level Fusion

Independent optimization of each model

Significant information loss

Currently, feature-level fusion methods dominate the
deepest learning research.

4. Application and case analysis of typ-
ical systems and fusion methods

4.1 Detection of movement intent in lower-ex-
tremity exoskeletons

As a classic human-robot interaction system, the low-
er-extremity exoskeleton’s effectiveness hinges on precise
interpretation of the user’s movement intentions. Niu
Miaohu et al. [15] constructed a recognition framework
based on multi-channel SEMG and convolutional neural
networks (CNN), significantly enhancing the stability of
gait classification. This system achieves active responses
for states such as standing, starting, and walking at a con-
stant speed through high-precision real-time motion rec-
ognition, demonstrating good practical deployment value.

4.2 Motion Intention recognition in prosthetics
for above-knee amputees

To address the rehabilitation needs of above-knee ampu-
tees, Du Yancheng et al. [16] designed a fusion system of
muscle pressure signals and IMU, combining traditional
feature extraction with a Bayesian classifier. This system
successfully distinguished five types of lower-limb move-
ments (such as kicking, stepping, and knee lifting). The
method not only reduces the burden on the wearer but also
enhances signal robustness, making it suitable for long-
term wearable deployment.

4.3 Rehabilitation assistance training platform

Some rehabilitation training platforms have incorporated
LSTM models to predict muscle activation patterns and
intervene in the assistive mechanism control in advance.
For example, a research team[17] embedded an IMU+L-
STM network structure into an intelligent gait belt, allow-
ing the system to adjust gait support before the patient is
about to take a step. This enables a proactive rehabilitation
strategy of “intention prediction rather than response.”

4.4 Typical application of data-level fusion

Data-level fusion of SEMG and IMU (raw concatenation)
involves directly concatenating the raw data collected
by the two sensors within the same time window into a
high-dimensional vector, which is then used for subse-
quent model training or recognition tasks. For example,
in gesture recognition, SEMG signals from 8§ channels and
IMU data from 6 axes (accelerometer + gyroscope) are
typically time-aligned, flattened, and concatenated before
being input into a neural network for classification. This
method effectively combines muscle activity and move-
ment dynamics, significantly improving recognition accu-
racy.

4.5 Typical applications of feature-level fusion

Typical application a typical multi-channel CNN parallel
structure, sSEMG and IMU signals are input into separate
convolutional neural network channels to extract their
respective spatial or temporal features. These features are
then concatenated or fused at the feature level and passed
through shared fully connected layers for classification.
This structure preserves the independent feature repre-
sentation capability of each signal while enabling deep
information fusion. It demonstrates higher robustness and
accuracy in tasks such as action recognition and gait anal-
ysis, making it particularly suitable for scenarios involv-
ing multi-modal signal fusion.

4.6 ons of decision-level fusion

In a typical ensemble learning system, sSEMG and IMU
each train independent classifiers (such as SVM, KNN,
Random Forest, etc.), and the decision outputs of the two
models are ultimately fused through methods like majority
voting or weighted averaging. This approach offers advan-
tages in modularity and flexibility, allowing full utilization
of each sensor model’s decision-making ability. It is com-
monly used in multi-modal action recognition and robust
enhancement scenarios, especially suited for handling het-
erogeneous sensor data and cross-domain generalization
problems.
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5. Conclusion

Motion intention recognition technology is the core foun-
dation for the development of intelligent exoskeletons,
prosthetic control systems, and rehabilitation training plat-
forms. This paper systematically reviews the development
trajectories of various signal sources (such as sSEMG,
IMU, muscle pressure, etc.) and recognition methods,
with a particular focus on the application of deep learn-
ing models in this field in recent years. From multi-scale
feature extraction using convolutional neural networks, to
temporal relationship modeling with LSTM, and the ex-
ploration of Transformer and signal fusion architectures,
all these approaches demonstrate the immense potential of
deep learning in improving the accuracy and adaptability
of intention recognition.
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