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Abstract:

Hydrogen energy is a clean and efficient form of energy,
and it is getting more and more attention for its wide use in
transportation, energy systems, and industry. But because
hydrogen has low density and spreads easily, storing it
safely, efficiently, and at low cost is still a big challenge.
Many materials like metal-organic frameworks (MOFs),
metal hydrides, and carbon-based nanomaterials have
been studied for storing hydrogen. However, most of them
still have problems, such as low storage ability, needing
strict conditions, and not working well after repeated use.
These issues make them hard to use in real life. In recent
years, artificial intelligence (Al) has brought big changes
to hydrogen storage research. Machine learning and deep
learning help predict material performance, understand
how things work, and design new materials. Together with
lab experiments, Al forms a full cycle of “design, test,
and improve,” which speeds up the development of better
materials. This paper presents a comprehensive review of
mainstream hydrogen storage mechanisms and materials,
evaluates their practical limitations, and highlights how Al
techniques are being applied to address these challenges.
The study aims to support the rational design of next-
generation hydrogen storage systems and promote deeper
integration between Al and materials science to advance
the scalable adoption of hydrogen energy.

Keywords: Hydrogen energy; Machine learning; Arti-
ficial intelligence; Structure generation; Mechanism dis-
covery

1. Introduction

Hydrogen energy is widely seen as an important
solution to help achieve carbon peaking and carbon
neutrality goals. As a clean, efficient, and renewable
secondary energy carrier, hydrogen has great poten-

tial in transportation, distributed power generation,
and industrial fuel use [1]. Unlike fossil fuels, hydro-
gen does not produce carbon dioxide when used. It
also has high energy density and can work well with
renewable energy like solar and wind [2]. This makes
hydrogen important for building a low-carbon energy
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system. However, one big problem remains—how to store
hydrogen in a safe, efficient, and low-cost way.

There are three main types of hydrogen storage: high-pres-
sure gas, cryogenic liquid, and solid-state storage. Among
them, solid-state storage is safer and has higher energy
density. This method uses the structure and chemical
properties of materials to trap hydrogen and release it
when needed. Many materials have been studied for this
purpose, such as metal-organic frameworks (MOFs), co-
valent organic frameworks (COFs), metal hydrides, and
carbon-based nanomaterials. The storage mechanisms also
go beyond physical and chemical adsorption to include
new ideas like Kubas interaction and nanoscale pumping.
Most materials cannot meet both U.S. DOE targets—at
least 5.5 wt% gravimetric and 40 g/L volumetric hydrogen
density. Traditional methods like high-throughput com-
puting and trial-and-error experiments are slow, costly,
and limited in scope. Recently, artificial intelligence (AI)
has brought new tools to this field. Machine learning can
predict performance, find hidden mechanisms, and help
design new materials that meet specific needs.

This paper introduces the structures and mechanisms of
common hydrogen storage materials. It also discusses
their advantages, problems, and how Al can help improve
them. Our goal is to support the design of better hydrogen
storage materials for future use.

2. Hydrogen Storage Mechanisms and
Their Limitation

Despite major progress in hydrogen storage research, cur-
rent technologies still face significant challenges before
they can be widely adopted. Whether hydrogen is stored
as compressed gas, cryogenic liquid, or within solid-state
materials, existing methods often fail to meet the com-
bined requirements of efficiency, safety, cost, and revers-
ibility at scale.

Physisorption-based materials offer fast and reversible hy-
drogen storage but depend on cryogenic temperatures and
precise pore structures. Chemisorption-based materials
deliver higher capacity but typically require high tempera-
tures to release hydrogen and exhibit sluggish kinetics.
Meanwhile, non-classical mechanisms remain largely
experimental, with few practical materials and limited en-
gineering solutions.

As Jain et al. have highlighted, storage remains one of the
greatest barriers to establishing a competitive hydrogen
economy: no current method fully satisfies real-world
performance targets [3]. This chapter systematically re-
views hydrogen storage mechanisms—physisorption,
chemisorption, and non-classical mechanisms—alongside

their key limitations. These issues must be addressed to
enable hydrogen to support large-scale energy systems.

2.1 Physisorption-Based Hydrogen Storage and
Its Limitations

Physisorption-based hydrogen storage refers to the phys-
ical adsorption of hydrogen molecules onto the surface or
within the pores of materials through weak van der Waals
forces, without forming chemical bonds. This method has
several advantages, such as quick hydrogen absorption
and release, good stability, full reversibility, and easy
reuse [4]. Because of these features, physisorption is es-
pecially useful in situations where hydrogen needs to be
stored and used many times. Materials suitable for this
method usually have a large surface area and many tiny
pores to help store more hydrogen. Common examples
include activated carbon, carbon nanotubes, graphene,
zeolites, and some advanced materials like metal-organic
frameworks (MOFs) and covalent organic frameworks
(COFs). Among these, MOFs are especially promising
due to their ultrahigh surface areas (often exceeding 1000
m’/g [5]) and tunable pore sizes, which allow tailored hy-
drogen storage properties. In optimal cryogenic conditions
(e.g., 77 K and high pressure), some MOFs can achieve
more than 7 wt% hydrogen uptakes [5].
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Fig. 1 Comparison of Gravimetric and
Volumetric Hydrogen Storage Densities [5]
However, physisorption has several critical limitations
that hinder its practical deployment. A major drawback
is its strong dependence on cryogenic temperatures: at
ambient conditions, adsorption capacity declines sharply,
significantly limiting applicability. Even under optimal
low-temperature and high-pressure conditions, many
materials still fail to meet the dual targets set by the U.S.
Department of Energy (DOE): 5.5 wt% gravimetric ca-
pacity and 40 g/L volumetric density [6], as shown in Fig.



1. Moreover, physisorption materials exhibit an inherent
trade-off between gravimetric and volumetric density. As
Goldsmith et al. [7] reported, increasing material porosity
enhances gravimetric hydrogen uptake but reduces pack-
ing efficiency and thus volumetric capacity. Conversely,
making structures more compact improves volumetric
performance at the expense of gravimetric density. This
trade-off prevents most MOFs from simultaneously
achieving both DOE benchmarks.

Additional challenges include the need for precise control
over pore size distribution, surface chemistry, and frame-
work stability, which makes the synthesis and scale-up of
these materials costly and technically demanding. Further-
more, real-world systems require advanced insulation and
cryogenic infrastructure to maintain low operating tem-
peratures, adding complexity and cost. While physisorp-
tion remains attractive for its reversibility, safety, and fast
kinetics, these limitations collectively hinder its feasibility
for widespread implementation in practical hydrogen en-
ergy systems.

2.2 Chemisorption-Based Hydrogen Storage
and Its Limitations

Chemisorption stores hydrogen by forming strong chem-
ical bonds, usually between hydrogen and metals, which
creates solid metal hydrides. Unlike physisorption, where
hydrogen stays as molecules, chemisorption breaks H,
into single atoms that then bond with metal atoms. This
method allows for higher hydrogen storage and better heat
stability, so it is useful in car fuel systems and energy stor-
age devices. Common materials include LaNi,, TiFe, and
light metal hydrides like MgH,, NaAlH,, and LiBH,. For
example, MgH, can store up to 7.6% of its weight in hy-
drogen, and its performance gets better with smaller par-
ticles and the use of catalysts like Nb,O; or TiCl;, which
help hydrogen move and react faster [8].

However, there are some important problems that limit
the wide use of chemisorption systems. One main prob-
lem is the high temperature needed to release hydrogen
because of the strong bonds between hydrogen and metal.
For example, MgH, needs temperatures over 300 °C to
release hydrogen properly, even when using catalysts.
Another issue is that the process is slow, since it includes
several steps: hydrogen molecules must first split on the
surface, then the atoms move into the material, and final-
ly, hydrides are formed or broken down. Each step can
significantly limit the rate of hydrogen uptake and release,
particularly under moderate conditions [9].
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Repeated hydrogenation/dehydrogenation cycles also
cause structural degradation, such as grain coarsening,
phase transitions, particle pulverization, and surface area
loss. For MgH,, grain growth during cycling reduces the
active surface area, impairs hydrogen diffusion, and low-
ers storage capacity over time, making the system less
reversible and efficient (Fig. 2). Moreover, many hydrides
are highly reactive to air and moisture, requiring airtight
containment and careful handling.

In summary, while chemisorption-based storage materials
offer superior storage density and are key candidates for
solid-state hydrogen storage research, their high thermal
requirements, slow kinetics, poor cycling stability, and
handling challenges significantly restrict their commercial
scalability.

2.3 Non-Classical Hydrogen Storage Mecha-
nisms and Their Limitations

Beyond traditional physisorption and chemisorption, re-
searchers have proposed non-classical hydrogen storage
mechanisms as innovative alternatives that aim to com-
bine the advantages of both approaches—moderate bind-
ing strength for easier release, and higher storage capacity.
These mechanisms rely on medium-strength interactions
between hydrogen and the host material, offering the po-
tential for room-temperature, reversible storage that could
meet practical performance targets [10].

One notable example is the Kubas interaction, where in-
tact H2 molecules reversibly bind to metal centers without
dissociation. This enables denser storage than physisorp-
tion, yet with easier release under ambient conditions.
Another concept is the nanoscale pump effect, in which
dynamic changes in the material’s structure or morphol-
ogy facilitate hydrogen uptake and retention, particularly
in flexible or responsive materials. Other proposed mech-
anisms include spillover effects and nanoscale dynamic
binding.
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While conceptually attractive, these non-classical mech-
anisms remain largely at the early research stage and
face substantial challenges. Very few materials have been
shown to reliably exhibit these behaviors under real-world
conditions. For example, although the Kubas interac-
tion theoretically allows reversible hydrogen storage
at room temperature, experimentally validated systems
are rare and often unstable outside controlled laboratory
environments [10]. Furthermore, many findings rely on
simulations or indirect evidence, making them difficult to
reproduce or scale up. Existing materials based on these
mechanisms generally exhibit low hydrogen capacities
and lack scalable, cost-effective synthesis methods.

In summary, while non-classical hydrogen storage mech-
anisms offer exciting possibilities for overcoming the lim-
itations of traditional approaches, their mechanistic uncer-
tainty, limited material development, and poor scalability
currently hinder their transition from theory to practice.

3. Applications of Artificial Intelligence
in Hydrogen Storage Materials

In recent years, artificial intelligence (AI) and machine
learning (ML) have become important tools in materials
science, creating a new way of doing research based on
data. Traditional hydrogen storage research depends on
trial-and-error experiments or slow and expensive calcu-
lations like density functional theory (DFT), which cannot
keep up with the fast-growing need for clean energy. Be-
sides, problems such as balancing weight and volume of
storage, slow hydrogen absorption and release, and poor
stability over many cycles have not been solved by these
traditional methods.

Al can analyze large amounts of data, find hidden patterns
in complex information, and use these insights to help
discover and improve new materials. This chapter looks
closely at how Al is used in hydrogen storage materials,
focusing on four main areas: predicting properties, dis-
covering mechanisms, creating new structures, and com-
bining with experiments. Each part shows real examples
and results, proving that Al is helping to overcome old
challenges in this field.

3.1 Property Prediction for Hydrogen Storage

One of the most critical steps in developing efficient hy-
drogen storage materials is accurately predicting their key
properties before synthesis. Parameters such as hydrogen
uptake capacity (both gravimetric and volumetric), ad-
sorption enthalpy, desorption temperature, and cycling
stability directly determine whether a material can meet
industrial benchmarks, such as those set by the U.S. DOE.

However, traditional computational methods like DFT are
not scalable, as a single calculation can take several days
per material, making it impractical to screen the millions
of possible material candidates.

Al has proven highly effective in overcoming this bot-
tleneck. Ahmed et al. [11] demonstrated that ML models
trained on existing experimental and simulated datasets of
MOFs and hydrides could predict gravimetric hydrogen
uptake with a mean absolute error (MAE) of ~0.12 wt%
and desorption temperatures within £18 °C of experimen-
tal results. This level of accuracy, comparable to DFT, was
achieved while screening over 10000 material candidates
within hours, representing a speedup of up to 100x. Their
study also showed that random forest (RF) and support
vector machine (SVM) models outperformed linear mod-
els when capturing nonlinear interactions between struc-
tural descriptors and hydrogen uptake.

These models also found new important connections that
were overlooked before, like how the way pores connect
and the strength of metal-ligand bonds affect the heat re-
leased during hydrogen adsorption. For example, metal—
organic frameworks (MOFs) with medium-sized pores
(about 8-10 A) and open metal sites showed a better bal-
ance between weight and volume storage. But if the pores
are too large, the volume storage gets worse even if the
surface area is high.

More advanced techniques like transfer learning have
been used to apply knowledge from well-studied MOFs
to less-known materials like covalent organic frameworks
(COFs) and zeolites. This helps machine learning predic-
tions work better on different materials. These models not
only save time and money in finding new materials but
also help explain how certain structures affect storage per-
formance, which guides scientists to make better materials
more efficiently.

3.2 Mechanism Discovery

Besides predicting how well materials perform overall, it
is also important to understand the small-scale processes
that control how hydrogen is adsorbed, moves, and is re-
leased inside materials. Traditionally, scientists have used
methods like neutron scattering, in situ spectroscopy, and
molecular dynamics simulations to study these processes.
Although these methods are accurate, they require a lot of
time and resources and are hard to use on many different
materials.

Al has become a useful addition to these methods by an-
alyzing large and varied data to find hidden connections
and causes. For example, Choudhary et al. used explain-
able Al (XAI) on models trained with experimental and
simulated data from hundreds of MOFs and hydrides [12].



Using SHAP (Shapley Additive Explanations) values, they
showed that features like pore flexibility and differences
in binding sites explained up to 35% more of the changes
in hydrogen release speed than surface area alone. This
challenged the long-held assumption that maximizing
surface area was always beneficial, emphasizing the need
to optimize pore dynamics and chemical heterogeneity
instead.

Similarly, unsupervised clustering techniques have been
employed to identify distinct adsorption site types and hy-
drogen diffusion pathways in flexible MOFs. These meth-
ods found that certain secondary pores, previously thought
to be inactive, contributed significantly to storage at high
pressures by stabilizing weakly bound hydrogen mole-
cules. In Mg-based hydrides, Xie et al. showed through
graph neural networks that engineering nanocrystalline
boundaries could reduce diffusion barriers by ~20%, im-
proving kinetics and cycle life [13].

These insights are particularly valuable because they con-
vert black-box observations into interpretable, causally
linked design principles, allowing researchers to rationally
modify materials to overcome specific limitations such as
slow kinetics or poor reversibility.

3.3 Structure Generation

Perhaps the most exciting frontier of Al in hydrogen stor-
age research is its ability to generate entirely new material
structures, enabling exploration of vast chemical spaces
beyond what has been synthesized or catalogued. Conven-
tional material discovery has been constrained by human
intuition and the incremental modification of known com-
pounds, limiting the diversity and innovation of candidate
materials.

Generative models such as variational autoencoders
(VAEs), generative adversarial networks (GANs), and
reinforcement learning-enhanced graph neural networks
(GNNs) now make it possible to propose novel hypothet-
ical materials that are tailored to specific performance
criteria. For example, Jablonka et al. applied a VAE to the
Cambridge Structural Database of porous materials and
generated over 500 previously unreported MOF topolo-
gies, with 20 showing predicted gravimetric uptakes ex-
ceeding 6.5 wt% at 77 K and 100 bar—about 15% higher
than the best human-designed MOFs at the time [14].
These models can also perform inverse design, starting
with a set of desired targets—such as a specific gravimet-
ric and volumetric capacity—and iteratively proposing
structures optimized to meet those requirements.

In one study, Al-generated MOFs showed a 15-20%
improvement in predicted performance over the best
experimentally known MOFs while reducing discovery
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time from months to days. These results illustrate how
Al-driven generative design not only accelerates material
discovery but also allows researchers to transcend the
limitations of human bias and conventional trial-and-error
approaches.

3.4 Integration with Experimental Workflows

AT’s greatest potential is realized when integrated into
closed-loop experimental workflows, enabling seamless
feedback between computational predictions and labora-
tory validation. In these “virtual-experimental co-design”
frameworks, Al models are used to prioritize candidate
materials, guide automated synthesis, and incorporate
experimental results back into the models to iteratively
refine predictions and improve accuracy.

Butler et al. highlighted how machine learning integrated
with high-throughput robotic synthesis and automated
characterization has already transformed material discov-
ery pipelines [15]. In their review, they discuss several
experimental platforms where Al-based predictions are
directly fed into automated systems capable of synthesiz-
ing and testing hundreds of material samples in parallel.
For example, in a high-throughput study of perovskite
thin films, ML-guided synthesis enabled the identification
of optimal compositions within a chemical space of over
100000 possibilities in just a few weeks, a task that would
have taken years using traditional methods. Similar ap-
proaches have been proposed for hydrogen storage mate-
rials, combining predictive screening with rapid synthesis
and characterization, greatly accelerating the validation
process.

Moreover, integrating Al with automated experimental
tools improves reproducibility and scalability. For in-
stance, magnesium-based hydride compositions optimized
by ML-guided design and then validated experimentally
achieved 20% faster hydrogen absorption kinetics and a
30 °C lower desorption temperature compared to baseline
materials, demonstrating how Al-driven workflows can
address specific bottlenecks in solid-state hydrogen stor-
age systems.

These intelligent, adaptive workflows are poised to be-
come the standard for materials discovery in the hydrogen
economy, drastically reducing time-to-market while en-
suring higher-quality outcomes, as emphasized by Butler
etal. [15].

4. Conclusion

Hydrogen storage remains a pivotal challenge in realizing
a sustainable hydrogen economy. Although a wide array
of storage materials—ranging from physisorption-based
frameworks to chemistries hydrides and emerging
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non-classical systems—have been explored, no existing
material fully satisfies the dual criteria of high gravimet-
ric and volumetric capacities under practical conditions.
Traditional design approaches, while scientifically rigor-
ous, are often hindered by long development cycles, high
costs, and limited structural coverage. The integration of
artificial intelligence into the hydrogen storage domain
presents a transformative shift in how materials are dis-
covered, understood, and optimized. Machine learning
models have demonstrated significant success in pre-
dicting key performance metrics, uncovering adsorption
mechanisms, and even generating novel material struc-
tures with tailored properties. When coupled with exper-
imental feedback and automation tools, these Al-driven
strategies establish a closed-loop discovery paradigm that
accelerates innovation while reducing empirical burden.
Looking forward, interdisciplinary collaboration among
materials scientists, computer scientists, and chemical
engineers will be essential to further refine data quality,
model interpretability, and experimental integration. The
continued advancement of Al-powered platforms is ex-
pected to unlock previously inaccessible material spaces
and guide the rational design of next-generation hydrogen
storage systems that meet both industrial and environmen-
tal benchmarks.
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