Artificial Intelligence in Healthcare: Clinical Applications and Economic Implications

Geyao Zhao 1,*

¹Department of life sciences, University of Toronto, Toronto, Canada

*Corresponding author: zgy050612@gmail.com

Abstract:

Artificial intelligence (AI) has gradually shifted from theoretical research in the mid-20th century to practical tools that now influence both clinical decisions and economic outcomes. This paper follows the development of AI applications in healthcare and considers their economic significance at different stages. Early diagnostic systems such as INTERNIST-1 and MYCIN provided initial proof of concept, while computer-aided detection (CAD) in the 2000s highlighted the potential role of AI in medical imaging. Although early CAD tools were limited by high false-positive rates and integration problems, progress in deep learning over the past decade has improved diagnostic accuracy, reduced unnecessary procedures, and lowered costs. Case studies, for example Google Health's breast cancer screening system, suggest meaningful reductions in misdiagnosis, improved workflow, and economic benefits downstream. Broader analyses in Europe also indicate that AI applications can generate annual savings in the range of €170–212 billion through better workforce efficiency, optimized resources, and improved outcomes. Despite these encouraging results, concerns remain about privacy, fairness, and implementation costs. Overall, current evidence points to AI as a potentially transformative force in healthcare, not only clinically but also economically, with the capacity to support long-term system sustainability.

Keywords: Artificial Intelligence; Healthcare; Economic impact; Medical imaging; Computer-Aided Diagnosis

1. Introduction

Commercial and financial strain has grown on treatment systems worldwide over the past ten years.

As people age, the demand for long-term treatment has considerably increased, but the cost of critical conditions is still growing. Some European nations account for more than 10 % of total economic output,

whereas about one-fifth of the region's GDP is devoted to health-related fees. These figures demonstrate the size of the healthcare industry and the need to find creative ways to reduce financial stress without sacrificing patient treatment.

Current technology has attracted a lot of attention as a potential remedy in this environment, because of its ability to process sizable amounts of health data and generate insightful insights, artificial intelligence (AI) has grown to become one of the frequently discussed pieces of equipment. AI applications go beyond easy backup and recovery, in contrast to earlier technological developments like health data technology. They fervently support health decisions, including creating personalized treatment plans and early disease diagnosis. For instance, forecasting techniques aid doctors in identifying the development of chronic conditions, while machine learning models aid professionals in interpreting complex tracking results [1]. AI is also being looked into in addition to a specific health meeting. Clinics are beginning to use algorithm-driven techniques to maintain employee schedules, determine individual preferences, and facilitate individual action in emergency departments. Although some of these programs are not available to people, they may have significant financial implications by lowering operating costs, reducing waiting times, and improving the efficiency of care facilities.

Despite these advantages, AI's socioeconomic consequences remain obscure. Outcomes depend on municipal care models, workplace apprehension, and other factors. People fight with the need for workforce participation and training, despite reports of significant cost savings and increased output from some businesses. Concerns about using AI effectively also arise from personal, scientific prejudice, and equal exposure.

From a clinical and economic perspective, this paper examines the impact of artificial intelligence (AI) in health-care. It demonstrates how AI has gradually evolved from philosophical studies to programs with quantifiable effects by checking its transition from the earliest skilled devices in the 1970s to more advanced deep learning tools in the 2020s. Case studies should be used to demonstrate both the benefits and drawbacks, such as the early 2000s 'use of computer-aided detection (CAD) technology and the more recent Google Health breast cancer screening initiative. The discussion attempts to highlight both the potential financial rewards of AI and the circumstances under which they are generally likely to occur.

2. Historical Foundations of AI in Healthcare

From the mid-20th century onward, artificial intelligence

slowly developed from a theoretical idea into practical tools with potential medical value. The formal term artificial intelligence was first used in 1956, setting the stage for subsequent exploration. By the early 1970s, AI had already begun to appear in medicine, mainly in the form of expert systems. For instance, INTERNIST-1 (1971) was designed to assist physicians in internal medicine by suggesting differential diagnoses, while MYCIN (1976) provided recommendations for bacterial infections through a rule-based method known as backward chaining [2,3].

Collaboration across disciplines accelerated progress. The 1975 AI in Medicine workshop at Rutgers University, for example, encouraged computer scientists and clinicians to work together, which later supported the development of more advanced systems such as CADUCEUS in the 1980s. This system was able to evaluate over 1,000 diseases by applying abductive reasoning. A further step was DXplain, introduced by Massachusetts General Hospital in the late 1980s, which generated differential diagnoses aligned with physician reasoning[4].

Although promising, these early systems were limited by the technology of the time. Computers lacked processing power, much of the knowledge had to be manually entered, and integration into daily clinical routines was difficult. Nevertheless, they established a foundation that shaped later machine-learning approaches in the 21st century[5].

2.1. Computer Aided Diagnosis in 2000s

Computer-aided diagnosis (CAD) systems, particularly those used in mammography-based breast cancer screening, started to gain popularity in medical imaging at the beginning of the twenty-first century. Online X-ray pictures were analyzed using machine learning techniques to identify areas that might show tumors or other unexpected growths.

The ability to show subtle shifts in pictures that pharmacists often overlook increased the overall monitoring for chest cancer situations, one of Autocad's greatest advantages[6,7]. Studies at the time suggested that CAD may increase sensitivity by about 10 % to 15 %, leading to earlier lesions being found. In the long run, early detection of tumors typically lowers the need for expensive medical treatments and possible medical expenses. Additionally, CAD reduced patient waiting times, shortened doctor achievement, and increased the capacity of professionals to manage large amounts of images more often[7].

Even so, CAD was far from perfect. The systems sometimes produced a high number of false alarms, which led to extra tests, additional expenses, and unnecessary anxiety for patients. Their performance often depended on image quality, and complex cases still required close human supervision. Hospitals also faced barriers such as software

ISSN 2959-409X

costs, training requirements, and the challenge of fitting CAD smoothly into daily workflow. For these reasons, while CAD did demonstrate clear clinical and economic value, its role during the 2000s was more supportive than revolutionary.

2.2. Economic impact of AI in the 2020s

By 2020, the economic impact of AI in healthcare had become more measurable, particularly in Europe. As shown in Table 1, different AI applications demonstrated substantial contributions. Medical imaging diagnostics, for example, generated an estimated €50–60 billion annually, while improving early cancer detection and reducing misdiag-

nosis, which directly translated into lives saved and reduced treatment costs. Virtual health assistants showed the highest efficiency gains, saving over 1.1 billion workforce hours each year by automating patient triage, reminders, and follow-up care, with an economic value of ϵ 60–70 billion. Wearables and predictive monitoring added another ϵ 40–50 billion through early detection of chronic disease risks, reducing hospital admissions and long-term healthcare expenses. These applications illustrate how AI not only improves patient outcomes but also eases the economic burden on healthcare systems by reallocating human resources and lowering avoidable costs (Table 1) [8].

Table	1. Estimated	impact of A	хі аррисацо	ns in Europea	an neamncare

AI application	Annual economic value	Lives saved per year	Workforce hours saved (Million)
Wearables & Predictive monitoring	40-50	120,000+	300+
Medical imaging diagnostics	50-60	150,000+	400+
Virtusl health assistants	60-70	80,000+	1,150+
Other (Admin, treatment optimization)	20-32	30,000+	100+
Total	170.9-212.4	380,000-403,000	1,660 - 1,940

A landmark study published in Nature in 2020 highlighted how AI could deliver both clinical and economic value. Google Health developed a breast cancer screening algorithm that consistently outperformed radiologists across different datasets, lowering both false positives and false negatives. This advancement reduced unnecessary biopsies and follow-up imaging, which directly cut costs for patients and health providers. Earlier and more accurate detection also limited the need for expensive treatments at advanced stages of the disease. Beyond direct savings, the system eased the workload of radiologists, allowing more efficient use of human resource[9]. Together, these outcomes illustrate how AI tools were beginning to move beyond experimental trials into real-world clinical use, with tangible benefits for both healthcare quality and financial sustainability.

3. Discussion

The evolution of artificial intelligence in healthcare reflects a steady shift from early experimental systems to clinically relevant tools with measurable economic effects. Initial expert systems such as INTERNIST-1 and MYCIN demonstrated that computers could assist with medical reasoning, but technical constraints and integration challenges limited their adoption. By the 2000s, CAD technologies had entered routine imaging, providing tangible sup-

port for radiologists, though their high false-positive rates and dependence on human oversight restricted broader trust and efficiency gains[10].

With the growth of deep learning and access to larger, higher-quality datasets in the 2010s and 2020s, the performance of AI systems improved substantially. Modern applications, such as Google Health's breast cancer screening model, showed clear reductions in diagnostic errors and avoided unnecessary procedures, directly translating into lower healthcare costs. In addition, the redistribution of clinical workload and faster diagnostic turnaround hinted at broader organizational benefits that are more difficult to quantify but no less important.

Still, optimism should be balanced with caution. Barriers such as data governance, algorithmic bias, implementation costs, and uneven access across different health systems continue to limit the universal benefits of AI. These challenges underline that the true economic impact of AI is closely tied to context—depending not only on the technology itself but also on infrastructure, regulation, and workforce readiness[11].

4. Conclusion

Over the past five decades, artificial intelligence has moved from conceptual exploration to widespread clinical application, with growing evidence of both clinical and economic value. From early rule-based expert systems, through the adoption of CAD in imaging, to the recent deployment of deep learning algorithms, AI has repeatedly demonstrated the potential to enhance diagnostic accuracy, increase efficiency, and reduce healthcare costs.

Yet progress has been uneven. Implementation hurdles, high initial expenses, and persistent concerns over privacy and fairness mean that AI is not a universal solution. Nonetheless, the overall trajectory suggests that as algorithms become more reliable and infrastructure improves, AI's economic contribution to healthcare will continue to expand.

For policymakers and healthcare leaders, the key task will be to balance innovation with responsibility. Ensuring robust data protection, minimizing bias, and enabling equitable access will be essential for AI to move beyond shortterm cost savings and become a sustainable foundation for future healthcare systems.

References

- [1] Wolff J, Pauling J, Keck A, Baumbach J, The Economic Impact of Artificial Intelligence in Health Care: Systematic Review J Med Internet Res 2020;22(2):e16866 URL: https://www.jmir.org/2020/2/e16866. DOI: 10.2196/16866
- [2] Ai's Ascendance in Medicine: A timeline. Cedars. (n.d.). https://www.cedars-sinai.org/discoveries/ai-ascendance-in-medicine.html
- [3] Fassil Mesfin, Artificial Intelligence in Healthcare: Historical Development, Benefits and Increasing Access for Underserved Populations. COJ Rob Artificial Intel. 4(1). COJRA. 000576. 2024. DOI: 10.31031/COJRA.2024.04.000576

- [4] Bird RE, Wallace TW, Yankaskas BC. Analysis of cancers missed at screening mammography. Radiology. 1992 Sep;184(3):613-7. doi: 10.1148/radiology.184.3.1509041. PMID: 1509041.
- [5] Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):198-211. doi: 10.1016/j.compmedimag.2007.02.002. Epub 2007 Mar 8. PMID: 17349778; PMCID: PMC1955762.
- [6] Bird, R. E., Wallace, T. W., & Yankaskas, B. C. (1992). Analysis of cancers missed at screening mammography. Radiology, 184(3), 613–617. https://doi.org/10.1148/radiology.184.3.1593629
- [7] Brem, R. F., Rapelyea, J. A., Pugliese, P. V., et al. (2005). Accuracy of breast cancer screening with digital mammography and CAD. AJR American Journal of Roentgenology, 184(3), 876–882. https://doi.org/10.2214/ajr.184.3.01840876
- [8] Deloitte. (2025, June 11). Smart use of Artificial Intelligence in health care. Deloitte Insights. https://www.deloitte.com/us/en/insights/industry/health-care/artificial-intelligence-in-health-care.html
- [9] McKinney, S.M., Sieniek, M., Godbole, V. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020). https://doi.org/10.1038/s41586-019-1799-6
- [10] Lehman CD, Wellman RD, Buist DSM, Kerlikowske K, Tosteson ANA, Miglioretti DL. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175(11):1828–37.
- [11] Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94–8.