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Abstract:

Surface electromyography (SEMG) provides a crucial non-
invasive method for early assessment of motor intent,
essential for the control of upper-limb exoskeletons
operating under stringent real-time constraints. This review
compares three prominent classifiers—support vector
machine (SVM), linear discriminant analysis (LDA),
and random forest (RF)—in the context of sSEMG-based
motion intention recognition. Employing a standardized
methodological framework, this paper analyze performance
metrics such as accuracy, latency, robustness, and
computational efficiency, while addressing challenges
like non-stationarity, inter-subject variability, and class
imbalance. Results indicate that LDA is suitable for fast
inference in control loops at 50-100 Hz, while SVM
offers high accuracy for complex decision boundaries at a
greater computational cost. RF stands out for its robustness
to noise and cross-user variance, making it viable for
real-time applications, albeit with trade-offs in model
complexity and interpretability. Overall, LDA and compact
RF models present practical options for embedded systems,
whereas SVM is preferable for scenarios prioritizing peak
accuracy. Future research should focus on compact feature
fusion, domain adaptation, and hybrid learning models to
enhance applicability in real-world settings.

Keywords: Surface Electromyography (sEMG); Up-
per-Limb Exoskeleton; Motion Intention Recognition;

Machine Learning; Rehabilitation Robotics.

1. Introduction

stroke, traumatic brain injury, spinal cord injury, ce-
rebral palsy, multiple sclerosis, and peripheral nerve

Upper-limb dysfunction is a prevalent consequence  jnjyry [1]. Patients often exhibit muscle weakness,

of limited motor function arising from various cen-

joint stiffness, impaired fine motor skills, decreased

tral or peripheral nervous system disorders, including coordination, and difficulties with motor intention
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expression, significantly hindering their ability to per-
form essential activities of daily living (ADLs) such as
dressing, eating, and writing. In post-stroke populations,
approximately 70% experience upper-limb motor impair-
ment after the acute phase, with less than 15% regaining
near-normal function within six months [1].

Research indicates that neurological recovery is contin-
gent upon neuroplasticity activation, necessitating intense,
high-frequency, repetitive training during rehabilitation.
Traditional physiotherapy, however, faces challenges in-
cluding insufficient training intensity, high subjectivity,
and difficulties in quantifying outcomes. Thus, there is an
urgent need for innovative assistive rehabilitation technol-
ogies to enhance the standardization, personalization, and
traceability of rehabilitation training [2].

As a wearable intelligent rehabilitation device, the up-
per-limb exoskeleton robot offers multi-degree-of-
freedom motion capabilities, facilitating both passive
and active motion training by simulating natural human
motion trajectories. These exoskeletons differ from con-
ventional rehabilitation devices through their significant
human-computer interaction, high adjustability, and re-
al-time feedback. The conceptual origins of exoskeleton
technology can be traced back to the Cybernetic Anthro-
pomorphous Machine (CAM) proposed by General Elec-
tric in the 1960s [3], which enabled external mechanical
expression of human intention via a master-slave arm
structure and force-position feedback mechanism. Initial-
ly intended for industrial and military applications, this
control principle has profoundly influenced the design of
medical rehabilitation exoskeletons and remains a theoret-
ical foundation for modern rehabilitation robotics [3].
Accurately discerning users’ movement intentions is piv-
otal in the control of exoskeleton robotics. Surface electro-
myography (SEMG) has emerged as a prominent method
due to its non-invasive characteristics and its ability to pro-
vide real-time insights into neuromuscular activity[4][5].
The precision of movement-intention recognition becomes
increasingly significant as upper-limb exoskeletons gain
traction in both support and rehabilitation contexts. Recent
advancements in machine learning methodologies have
markedly improved the application of SEMG in intention
recognition, motion classification, and the modeling of
control strategies. These technological developments are
essential for enhancing the efficacy and responsiveness of
exoskeleton systems in real-world applications [6].

The sEMG signal can generally be detected 50-100 ms
prior to movement [5]. It offers advantages such as early
detection and non-invasive application. However, its ef-
fectiveness is impacted by physiological and environmen-
tal factors like perspiration, electrode displacement, and
muscle fatigue [5]. Inter-subject variability and the diffi-
culty of non-invasive parameter acquisition hinder mod-

el-based approaches and degrade cross-person recognition
[7]. The high-dimensional, nonlinear nature of sSEMG
raises feature-extraction and computation demands; re-
al-time systems must maintain stable conditions to avoid
recognition delays that jeopardize control and rehabilita-
tion effectiveness [4].

The implementation of exoskeleton robot control through
electromyographic signals involves a methodical process,
including signal preprocessing, feature extraction, classifi-
cation, and control. Machine learning techniques enhance
system adaptability and recognition capabilities [4]. Rule-
based strategies lack flexibility for inter-individual vari-
ability and often yield suboptimal accuracy [5].

Machine learning methods, particularly supervised learn-
ing classification algorithms like Support Vector Machine
(SVM) and Random Forest (RF), improve precision and
robustness in recognizing action intention by autonomous-
ly learning from data [7]. Recent advancements in deep
learning, such as CNN, LSTM, and Transformers, exploit
automatic feature extraction, reducing reliance on manual
selection [6]. Furthermore, researchers have introduced
methodologies like domain adaptation and incremental
learning to address the challenges of temporal and in-
ter-user variability in SEMG, enhancing model generaliza-
tion and stability for long-term use [7].

This study reviews the use of SEMG for upper-limb exo-
skeleton control, with emphasis on three widely used clas-
sifiers—SVM, Linear Discriminant Analysis (LDA), and
RF. Methods are compared across signal preprocessing,
feature extraction, classification accuracy, and suitability
for embedded real-time control. Strengths and limita-
tions are contrasted, and implementation challenges (e.g.,
non-stationarity, inter-subject variability, latency) are
identified to clarify conditions under which each method
is preferable. Potential directions include multi-feature
fusion, compact feature selection, hybrid models, and
adaptive learning to enhance accuracy, robustness, and
generalizability in SEMG-based intention recognition.

2. Machine Learning—Based sEMG
Processing and Classification Methods
for Upper-Limb Exoskeletons

2.1 SVM in Upper-limb Exoskeleton Classifica-
tion and Processing

SsEMG is utilized for the recognition of movement inten-
tion in upper-limb exoskeleton applications, employing
SVM to facilitate real-time movement classification. The
method unfolds through the following specific steps:

2.1.1 sEMG Signal Acquisition

Atzori et al. provided a comprehensive overview of the



electrode arrangement and acquisition parameters in the
protocol for the NinaPro dataset [8]. The experimental
setup involved eight electrodes equally spaced around
the circumference of the forearm, just below the elbow
at the level of the radio-humeral joint. Additionally, one
electrode was positioned at each of the principal activity
points of the flexor digitorum superficialis and extensor
digitorum superficialis muscles. In a subsequent configu-
ration, the researchers incorporated one electrode each at
the main activity points of the biceps brachii and triceps
brachii muscles. The identification of these major activity
points was conducted through palpation to ensure the cap-
ture of signals from the principal muscles.

Data acquisition was executed using the Delsys Trigno
Wireless EMG system, where each electrode was powered
by an individual battery and affixed to the skin surface
using standard adhesive tape along with an external la-
tex-free elasticated fixation band to mitigate electrode dis-
placement during physical activity. The signal sampling
frequency was set at 2000 Hz, ensuring a baseline noise
level below 750 nV RMS, thereby providing high-quality
EMG data for subsequent motor intention recognition.

2.1.2 Signal Pre-processing

The SEMG signal has low amplitude and is easily affected
by motion artefacts, changes in electrode-skin impedance,
and power line interference. Rigorous pre-processing is
required before feature extraction and classification. Raw
signals are processed with a Butterworth band-pass filter
(10-500 Hz) to remove unwanted frequency components.
A 50 Hz notch filter reduces power supply interference
[4]. Multichannel sSEMG signals are normalized, often by
Z-score, to reduce individual variance [4][5]. After filter-
ing, signals are segmented with a sliding window. A 200
ms window and 50% overlap help ensure stable features
under real-time conditions [5]. Outliers and incomplete
segments are discarded before feature extraction. [4].

2.1.3 Feature Extraction

To effectively represent motion intent from preprocessed
sEMG signals, feature extraction using a sliding window
approach is essential. Recent studies classify features into
three categories: time-domain, frequency-domain, and
time-frequency-domain features, each with distinct signif-
icance and classification capabilities.

In the time-domain analysis, certain features provide
direct indicators of muscle contraction. Key features in-
clude:

Mean Absolute Value (MAV): This metric averages the
absolute values of the signal within a specific window, re-
flecting the intensity of EMG activity.

May = ) (1)
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Root Mean Square (RMS): This feature calculates the
square root of the mean energy, effectively reducing inci-
dental noise while indicating muscle contraction strength.

RMS = /%Zjﬁl X2 2)

Zero Crossing Count (ZC): This measures the number of
times the signal crosses zero, offering insight into the fre-
quency change of the signal.

Waveform length (WL) and Willison amplitude (WAMP):
describing the signal complexity and sensitivity to ampli-
tude variations, respectively [4][5].

wL=2."

WAMP = count(‘x.

i+l
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In terms of frequency domain characteristics, the power
spectrum of the signal is obtained by Fourier transform
and can be further calculated:

Mean Frequency (MNF) and Median Frequency (MDF)

for characterizing muscle fatigue regarding the signal
spectral distribution.

Xi1 =%

i

2. fP(f)
2. P(f)

where f; is the frequency component and P( fl) is the

MNF = (5)

power spectral density of the spectrum at frequency f;.

Iy P(f)=0.5% 2l P(f ) (6)
where f m is the frequency corresponding to when the
is the

total energy of the spectrum reaches half, andf,

maximum frequency of the spectrum.

Spectral Power (SP) and Spectral Entropy (SE), which can
reflect the energy distribution of the signal in a specific
frequency band [4].

SP=2.%, P(f) ()

In relation to time-frequency domain features, for non-sta-
tionary SEMG signals, techniques such as Short Time
Fourier Transform (STFT) or Wavelet Transform (DWT,
WPT) may be employed to acquire both time and frequen-
cy information, thus enhancing differentiation in complex
action patterns [4][5].

The previous features can be utilized independently or in
conjunction, contingent upon the specific task require-
ments. Research has proved that time-domain features,
particularly, offer significant advantages in classification
scenarios.

Cai et al. created a method for recognizing upper-limb
intentions using SVM, designed for mirror-type rehabili-
tation on the ReRobot platform. Their system utilized 16
channels of sSEMG data at a frequency of 1 kHz, capturing
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signals from nine different muscles. It applied baseline
correction, 20—500 Hz band-pass, 50 Hz notch, full-wave
rectification, and amplitude normalization with 4th-order
Butterworth filters. Sample entropy identified activity
segments. Feature extraction included RMS, waveform
length, variance, absolute mean, short-term energy, and
4th-order autocorrelation, using 128 ms Hanning windows
and 64 ms steps. A genetic algorithm optimized the RBF-
SVM, raising accuracy from 78.53% to 94.18%. With five
healthy subjects and five motions, 10x5-fold cross-val-
idation gave a 93.34% + 0.59% recognition rate (F1 =
0.9368). In robot tests, 92% actions were recognized, and
the SEMG-based emergency stop worked in all 25 trials

[9].

2.2 LDA in Upper-limb Exoskeleton Classifica-
tion and Processing

LDA, a fundamental linear classification technique, is
extensively employed in the domain of motion intention
recognition for upper-limb exoskeletons. In comparison to
SVM, LDA offers notable advantages, including a simpler
structural framework, reduced computational demands,
and enhanced real-time performance. These characteris-
tics render LDA particularly advantageous for exoskeleton
control systems that feature stringent real-time operational
requirements [4][5][8].

2.2.1 Feature Input and Data Processing

The input for LDA is analogous to that of SVM, where-
in preprocessed multi-channel SEMG feature vectors
are utilized. Frequently employed input features include
time-domain characteristics (e.g., MAV, RMS, ZC, WL,
WAMP), as well as frequency-domain and time-frequen-
cy-domain features. These features effectively capture the
intensity and frequency fluctuations of muscular activities,
as well as the complexity inherent in the signals [4][5][8].
Typically, these features are concatenated into a singular
multidimensional feature vector and subjected to compu-
tation and input in real time, utilizing a consistent sliding
window length of approximately 200 ms with a 50% over-
lap.

2.2.2 LDA Classifier Design

The foundational premise of LDA is to maximize the pro-
jective separation among distinct classes of samples by
identifying the optimal linear projection direction within
the feature space. To articulate this, one defines the in-

tra-class scatter matrix S, and the inter-class scatter ma-

trix S, :

S0 = 260 e, (5= )3 m) ) ©)

Sy :ZJC':I Nj(ﬂj_'“)(ﬂf_“)r ®)
where C denotes the number of categories, 4, represents
the mean vector of the j -th category, u signifies the over-
all mean vector for all samples, N; indicates the number
of samples in the j-th class, and D, denotes the set of

samples corresponding to the j -th class. The optimal pro-

jection matrix W is subsequently deduced by optimizing
the corresponding criterion function:

. sl
W' =argmax ‘
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where S, is the between-class scatter Matrix and §,, is

the Within-Class Scatter.

This optimal projection direction effectively maps the
feature space to a lower-dimensional linear discriminant
space, facilitating optimal classification [8][10].

2.2.3 Real-Time Classification Decision and Implemen-
tation

In practical exoskeleton control applications, the trained
LDA projection matrix is employed for real-time classifi-
cation. When the feature vectors for a new window are ex-
tracted, they are initially mapped to the discriminant space
through the matrix W. Subsequently, the system makes
decisions based on the distance between the feature vector
and the mean vectors of each category. This method em-
ploys a nearest neighbour strategy to identify the current
motion intent. [4][5].

2.2.4 Examples of LDA Applications and Recent Ad-
vances

Several studies have confirmed the suitability of LDA for
intention recognition in upper limb exoskeletons [10].
Duan et al. employed three-channel temporal domain
features to achieve real-time recognition of nine hand ges-
tures with 91.7% accuracy. Subsequent work combined
LDA with features such as MAV and ZC for classifying
shoulder-elbow coordinated movements. This approach
supports real-time control with high accuracy and low la-
tency [4][5][6].

Another notable example is the fully wearable soft hand
exoskeleton, “RELab tenoexo.” This device uses surface
EMG signals for grasp intention recognition. It captures
multi-channel sSEMG signals via a wireless Myo armband
during a 30-second calibration. Subsequently, standard
time-domain features train an LDA classifier, achieving
~92.9% average online classification accuracy (individu-
al accuracies 95.5% and 90.3%) along with low-latency
recognition of ‘open’ and ‘closed’ intentions [11][12]. The



wearable system features lightweight design, multiple
compliant grasp modes, and automatic customization [12].
Post-training, LDA outputs directly drive the exoskeleton
actuator, translating muscle signals into corresponding
hand assistance. In functional tests, users, including spinal
cord injury patients, demonstrated significant improve-
ments in hand function, enabling tasks such as pinching
marbles and using cutlery that would not have been possi-
ble without the device.

In conclusion, despite the growing interest in deep learn-
ing, LDA remains a pivotal and widely adopted method
for real-time motion intention recognition in upper-limb
exoskeletons. Its ease of implementation, low computa-
tional cost, and real-time performance make it well-suited
for embedded systems with demanding operational re-
quirements [4][5][8].

2.3 Random Forest in Upper-limb Exoskeleton
Classification and Processing

RF is an ensemble learning method introduced by Brei-
man, which significantly enhances the accuracy and ro-
bustness of classification tasks by constructing a multitude
of decision trees and aggregating their results through a
voting mechanism [13]. RF has been widely used for up-
per-limb exoskeleton motion intention recognition. This
method is particularly well-suited for real-time processing
and classification of multi-channel, high-dimensional fea-
ture sets [4][5].

2.3.1 Feature Input and Data Processing

RF employs the same preprocessed multi-channel sSEMG
features as SVM and LDA. The signals are band-pass
filtered between 10-500 Hz and notch filtered at 50 Hz,
followed by Z-score normalization. The data is segmented
into 200 ms windows with a 50% overlap [4][5]. For each
segment, standard time-domain metrics and frequency-do-
main features, including mean frequency, median frequen-
cy, and spectral power, are extracted. Additionally, time—
frequency features such as wavelet packet energies are
incorporated. These features are then concatenated into a
high-dimensional vector, which serves as the input for the
RF model [4][8].

2.3.2 Random Forest Classifier Design

Random Forest employs an ensemble of M decision
trees, each trained on M bootstrap replicas of the training
set. For each tree, splits are determined by a random sub-

set of features (“feature bagging”), selecting the split that
minimizes Gini impurity, defined as

Gini(D,a)=1- 2.5, p} (11)
Where D represents the node’s data, a is the candidate

feature, and p, denotes the fraction of class & within the
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node. During inference, each tree casts a vote on the label
of a new vector X, with the prediction being the majority
class:

7 =mode{h (X),hy(X),.... 1, (X)} (12)

This ensemble methodology reduces variance and miti-
gates overfitting compared to a single tree, demonstrating
robust performance against inter-subject variability and
noise in SEMG signals [13].

2.3.3 Real-time Classification and Control

In real-time applications, feature windows are continu-
ously input into the trained Random Forest (RF). Each
tree requires a limited number of split nodes to generate
outcomes, with majority voting concluding within tens
of milliseconds. This latency aligns with the demands of
embedded exoskeleton control loops operating at 50-100
Hz [4][5]. Model outputs are swiftly converted into con-
trol commands, such as flexion/extension states or assist
levels. Compared to single decision trees, RF exhibits
enhanced robustness to intricate movements and unstable
or noisy sEMG signals, along with superior generalization
performance.

2.3.4 Application Examples and Recent Advances

Atzori et al. introduced the NinaPro dataset, comprising
over 50 hand/wrist gesture classes, establishing a standard
benchmark for random forests (RF) and other classifiers
in high-dimensional, multi-class surface electromyogra-
phy (sEMG) recognition [8]. Xie et al. demonstrated that
RF outperforms single decision trees in multi-channel
sEMG, exhibiting greater resilience to inter-subject vari-
ability [5]. Zhao et al. highlighted RF’s ability to mitigate
overfitting while maintaining high accuracy and real-time
performance in complex upper-limb intent recognition
for exoskeletons [6]. Zhou et al. applied RF to NinaPro
DB4, which includes 12 basic finger movements across
10 subjects with 12-channel sSEMG. They extracted nine
time-domain features (e.g., RMS, MAV, WL, SSC, ZC)
and utilized scikit-learn, achieving an average accuracy
of 84.11% (SD 3.99%), with the best subject reaching
92.94%. Among the features, MAV was the most effec-
tive (~81.10%), while ZC showed lower performance
(~48.49%). These findings underscore RF’s efficacy in
multi-feature fusion and its robustness against overfit-
ting, which is advantageous for myoelectric control in
upper-limb exoskeletons [14]. Overall, RF is a robust
choice for upper-limb intent recognition, adept at handling
high-dimensional features and noisy signals while gen-
eralizing well across users, thereby facilitating complex
control and personalized rehabilitation [4][5][6].
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3. Comparative Discussion and Analysis

3.1 Real-Time Classification Decision and Im-
plementation

The three methods—SVM, LDA, and RF—utilize the
same sEMG acquisition, preprocessing, and feature set;
however, they differ in their learning mechanics and com-
putation costs. SVM, a large-margin method, employs
kernels to project features into higher-dimensional space,
effectively identifying a separating hyperplane. While
it adeptly models complex multi-class boundaries, it is
sensitive to hyperparameter tuning and may exhibit high
computational demands in settings with elevated dimen-
sionality [4][S][8].

Linear Discriminant Analysis (LDA) serves as a linear
classification method that aims to maximize inter-class
variance while minimizing intra-class variance. Its
straightforward structure and efficient execution render it
particularly suitable for real-time applications in embed-
ded exoskeleton systems. Yet, LDA assumes Gaussian
distributions with equal covariances, limiting its efficacy
with nonlinear data [4][5][10].

RF utilizes ensemble learning, training multiple decision
trees on diverse feature and sample subsets. This method
is resistant to noise and overfitting, and it handles high-di-
mensional features well, often achieving high accuracy in
complex scenarios. However, RF models can be relatively
large in scale, and ensemble-level interpretability is limit-
ed [4](5][8].

The choice of classification method depends on specific
application needs. For example, the EksoUE by Ekso Bi-
onics and MyoPro by Myomo both require high classifica-
tion accuracy to guide patient movements safely. In con-
trast, exoskeletons for daily assistance prioritize smooth
control over absolute accuracy to prevent user discomfort
[15][16].

Many commercial exoskeletons have limited computa-
tional capacity, necessitating classification algorithms with
low complexity and small memory footprints. In this con-
text, LDA and optimized RF methods are advantageous.

3.2 Performance Analysis and Practical Impli-
cations

Existing studies highlight the differing performance of
SVM, LDA, and RF in SEMG-based motion intention
recognition for upper-limb exoskeletons. Hassan et al.
(2020) conducted a gesture recognition study using a Myo
armband, extracting RMS, MAV, WL, AR(4), ZC, and
SSC features from seven gestures and six subjects, with
240 ms windows and 120 ms overlap. SVM (RBF kernel)
achieved the highest accuracy of 95.26%, outperforming
LDA (92.58%). SVM demonstrated strong generalization
for complex boundaries, while LDA’s efficiency favors
embedded real-time control despite slightly lower accura-
cy [17].

Atzori et al. evaluated classifiers on the NinaPro data-
set. RF, trained on multi-channel time-, frequency-, and
wavelet-domain features, achieved average accuracies of
75.3% (DB1) and 75.27% (DB2) over 50 gesture classes.
Although less accurate than SVM or LDA, RF showed
greater stability and resistance to overfitting in high-di-
mensional, noisy conditions, helping manage inter-subject
variability [8]. These results reflect task difficulty (large
class set, early feature engineering, heterogeneous cohort)
rather than an inherent RF limitation [8].

Building on these accuracy results, real-time constraints
are considered next. Exoskeleton control demands strict
real-time performance, with motion classification laten-
cy below 100 ms and ideally 50-80 ms [4][5][10]. LDA
excels in processing speed, RF adapts well to noise, and
SVM is suitable for managing nonlinear boundaries.
These latency profiles align with the accuracy—complexity
trade-offs in Section 3.1.

In terms of real-time performance, LDA exhibited the
lowest computational complexity. SVM incurred slightly
higher delays due to kernel complexity but remained fea-
sible (<100 ms). RF required voting across multiple trees,
increasing computational effort, but offered robustness
against noise and variability. Table 1 shows the perfor-
mance comparison of different classification methods.

Table 1. Performance comparison of different classification methods [8, 17].

Literature| Average accurac
Classification Y verag uraey Advantages Limitations
sources (%)
SVM (RBF) | Hassan et al. | 95.26 St'rong .ability to handle nonlinear bound- Paramet(?r tunir'lg is ‘complex and
aries, highest accuracy computationally intensive
LDA Hassan et al. | 92.58 Simple structure, g.ood real-time perfor- ASSL.II"HGS Gauss‘ian (%istribution, in-
mance, embedded friendly sensitive to nonlinearity
. 75.3/75.27 (DB1|Strong noise resistance, can handle|Large model, poor interpretation,
RF Atzori et al. . ) . .
/ DB2) high-dimensional redundant features slightly lower accuracy

Note: RF accuracy in [8] is affected by task difficulty (50+ classes), early feature engineering, and cohort heterogeneity.



4. Conclusion

This study evaluates SVM, LDA, and RF for sEMG-based
motion intention recognition in upper-limb exoskeletons.
In brief, SVM has strong nonlinear modeling and achieves
the highest accuracy on complex actions, making it well
suited for rehabilitation and fine manipulation. Converse-
ly, LDA has a simple architecture, low computational cost,
and solid real-time performance, making it a preferred
choice for real-time control in embedded systems. Recent
studies report competitive accuracies for RF when fea-
tures and parameters are carefully optimized.

Choosing the right algorithm requires consideration of
accuracy, real-time performance, and available computa-
tional resources. For devices like EksoUE and MyoPro,
high accuracy and low latency are critical. In assistive
exoskeletons, a balance between computational complex-
ity and control stability is essential. Future work should
emphasize feature fusion, compact feature selection, hy-
brid models, and adaptive learning to enhance accuracy,
reduce latency, and improve cross-user adaptability.
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