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Comprehensive Bioinformatics Analysis of

Differential Gene Expression Differences

between Lung Adenocarcinoma and Lung

Squamous Cell Carcinoma.

Duoduo Qian

Abstract:

Lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) are the two most prevalent histological
subtypes of non-small cell lung cancer (NSCLC), each
of which exhibits distinct molecular characteristics and
requires subtype-specific treatment strategies. This study
aimed to comprehensively analyze the differential gene
expression profiles between LUAD and LUSC to identify
subtype-specific biomarkers and pathogenic pathways.
Using RNA-seq data from The Cancer Genome Atlas
(TCGA), this study performed differential gene expression
analysis with DESeq?2, disease-free survival analysis via
GEPIA, and pathway enrichment analysis using Enrichr
with the KEGG 2021 Human database. A total of 29,052
and 28,866 significant differentially expressed genes
(DEGs) were identified in LUAD and LUSC respectively.
Key up-regulated genes in LUAD, including FAM&3A4
and FAM83A4-AS1, were significantly associated with poor
disease-free survival (HR = 1.5, p =0.0048; HR = 1.6, p =
0.0024), while down-regulated PECAM 1 showed protective
effects (HR = 0.71, p = 0.03). Pathway analysis revealed
significant dysregulation of the cell cycle pathway in
both subtypes, with LUAD showing stronger association.
The DNA replication pathway was notably prominent in
LUSC, while a unique malaria pathway was identified in
LUAD. The research findings underscore the molecular
heterogeneity between LUAD and LUSC, highlighting
potential prognostic biomarkers like FAM834 and subtype-
specific pathogenic pathways, which could inform the
development of precise therapeutic interventions between
LUAD and LUSC.

Keywords: TCGA, non-small-cell lung cancer (NS-
CLC), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), bioinformatics, differential gene
expression, disease-free survival (DFS), pathway enrich-
ment, KEGG, GEPIA
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1 Introduction

Lung cancer is one of the leading causes of cancer-related
death worldwide, with approximately 1.8 million deaths
each year. It is a serious health problem that can lead to
injury and death. Symptoms of lung cancer include a per-
sistent cough, chest pain and shortness of breath. [1]

As with other cancers, the fundamental abnormality that
leads to the development of lung cancer is the continuous
uncontrolled proliferation of cancer cells, forming a tu-
mor. [2] NSCLC is the most common type of lung cancer,
constituting approximately 80% to 85% of all lung can-
cer cases worldwide. It is primarily categorized into two
histological subtypes: lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC). Lung adenocar-
cinoma (LUAD) is the most prevalent NSCLC subtype,
accounting for about 40% of all lung cancers. [3]

Lung cancer is often diagnosed at advanced stages when
treatment options are limited. Therefore, despite the ad-
vances in diagnosis and treatment for lung cancer, the
prognosis for patients with NSCLC remains suboptimal,
with a relatively low 5-year survival rate of approximately
26.7%. [4] This highlights the need for a deep under-
standing of the molecular differences between LUAD and
LUSC in order to facilitate the development of more ef-
fective subtype-specific treatments against lung cancer.
Differential gene expression (DGE) analysis is a key tool
used to elucidate the molecular basis of cancer. A gene is a
section of DNA that codes for a specific protein that is es-
sential for body functions. Cancer may begin when certain
genes malfunction, leading to uncontrolled cell growth. [5]
Gene expression is the process where genes are activated
to produce RNA or proteins [6], whereas differential gene
expression refers to variations in gene activity between
different conditions. Studying the differentially expressed
genes (DEGs) between the two NSCLC subtypes can help
to identify and understand the differences in the molecular
basis of cancers.

Despite the advancements in cancer research, there is
a need for a more comprehensive understanding of the
differential gene expression profiles between NSCLC sub-
types. Therefore, this research will delve into the field of
cancer genomics and bioinformatics, aiming to conduct
a comprehensive bioinformatics analysis to delineate dif-
ferent patterns of DEGs between LUAD and LUSC. This
will be achieved by utilizing The Cancer Genome Atlas
(TCGA) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) 2021 Human database for data acquisition, and
by performing differential gene expression analysis to
identify DEGs, conducting survival analysis to assess the
prognostic significance of DEGs, and carrying out path-
way enrichment analysis to find key pathway differences

between LUAD and LUSC.

2 Literature Review

2.1 Genomics: Role of Genes in Cancer Devel-
opment

Cancer genomics, which is defined as the study of the
complete sequence of DNA and its expression in tumor
cells. [7]

2.1.1 Relationship of gene and cancer

“Cancer is a genetic disease—that is, it is caused by
changes to genes that control the way our cells function,
especially how they grow and divide.” [4] As mentioned,
genetic changes are the key reason for the occurrence
of cancer. These changes may arise from environmental
exposures or spontaneous errors during DNA replication.
[8] Gene mutation is one of the typical causes of cancer.
Several studies, specifically Vogelstein, B. et al. (2013)
have shown that mutation in genes such as 7P53 and
KRAS leads to uncontrolled proliferation and survival
of cancer cells. On the other hand, studies have shown
that environmental stimuli can cause epigenetic changes,
which alters gene expression levels without changing the
underlying DNA sequence through regulating DNA meth-
ylation or histone modification. [9, 10] Research in fields
of epigenetics shows that non-mutational changes can
also be a potential cause of cancer. This statement could
be further evidenced by Bradly, D.P. et al. (2012) and Li,
Y. et al. (2020), proving that hypermethylation of the CD-
KN24 gene can silence the expression of the p16 tumor
suppressor gene, leading to formation of tumor in lung
cancer. All of the above studies have shown how genetic
changes could contribute to the occurrence of cancer, but
also indicate that the relationship of genes and cancer is
very complex, involving intricate interactions between
gene mutations, epigenetic modifications, environmental
factors, which collectively contribute to cancer develop-
ment and progression.

2.1.2 Cancer related genes

Different types of genes play a critical role in regulating
cellular processes such as cell division, apoptosis, and
DNA repair. [11] Oncogenes, tumor suppressor genes, and
DNA repair genes are 3 main types of genes that may lead
to cancer development when they are mutated or abnor-
mally expressed.

2.1.3 Genomic differences between LUAD and LUSC
Genomic differences refer to variations in the genetic

material like DNA sequences, copy number alterations
or chromosomal rearrangements. For instance, mutations



in oncogenes, tumor suppressor genes, and DNA repair
genes are frequently observed in lung cancer but with
distinct patterns between LUAD and LUSC. According
to The Cancer Genome Atlas Research Network (2014),
LUAD is frequently characterized by mutations in EGFR,
KRAS, and rearrangements in ALK gene that drive on-
cogenic signaling pathways. In contrast, another study
has shown that LUSC frequently shows alterations in
TP53, CDKN2A, and PIKCA, along with amplifications
in SOX2 and FGFR1. These findings present the genomic
difference between the different variations in genetic ma-
terials of LUAD and LUSC (The Cancer Genome Atlas
Research Network, 2012).

2.2 Bioinformatics: Bioinformatics Approaches
in NSCLC Research

Bioinformatics is an interdisciplinary science that com-
bines biology, computer science, and statistics to col-
lect, store and analyze large-scale biological data using
high-throughput technologies. Researchers are able to
study systematically in the fields of genomics, transcrip-
tomics, and proteomics. [12, 13]

2.2.1 Introduction to The Cancer Genome Atlas
(TCGA) database

The Cancer Genome Atlas (TCGA) database provides
various types of biological data such as transcriptome pro-
filing, simple nucleotide variation, copy number variation,
DNA methylation, RNA sequencing, clinical and biospe-
cimen data of about 84,392 cancer patients. [14] With no
doubt, TCGA has produced rich data sets of immeasurable
value and promoted substantial development in the bioin-
formatics field. Its program has molecularly characterized
over 20,000 primary cancer and matched to normal sam-
ples from 33 cancer types, bringing together researchers
from different disciplines and multiple institutions. [15,
13]

2.2.2 Application of bioinformatics in NSCLC research

Bioinformatics has escalated cancer research by making
the integration and analysis of large-scale data sets more
feasible. Many NSCLC studies are based on TCGA, GEO,
and KEGG databases. These bioinformatics databases
are important for discovering NSCLC subtype-specific
molecular features, key driver mutations, gene expression
patterns, pathway alterations and therapeutic targets. [16]
At the same time, bioinformatics tools also play a signifi-
cant role in NSCLC research. For instance, Dai, B., Ren,
L., Han, X. and Liu, D. (2019) used DAVID for pathway
enrichment analysis and the Geo2R tool in GEO database
for DGE analysis. This study revealed new biomarkers
related to diagnosis and prognosis in the pathogenesis
of NSCLC, and identified potential therapeutic targets

Dean&Francis

DUODUO QIAN

through bioinformatics analysis without the use of clinical
trials. These applications highlight the transformative role
of bioinformatics in improving cancer diagnosis and treat-
ment, helping researchers to further understand the occur-
rence and development of NSCLC, translating these rich
data sets into biological insights and clinical applications.

2.3 Differential Gene Expression (DGE) Analy-
sis

2.3.1 Overview of differential gene expression analysis-
its meaning and significance

Differential gene expression analysis is the statistical
analysis of gene expression data between the test group
(such as the tumor group) and the control group (usually
the healthy group or normal group) under specific condi-
tions. It works by filtering out the genes with significant
expression changes. [17] Gene expression levels could
be up-regulated where genes are over-expressed, or
down-regulated where genes are under-expressed. DGE
analysis reveals the subtype-specific gene expression
patterns of NSCLC. It is important to identify DEGs of
NSCLC and understand their role in the molecular mech-
anisms, resulting in advancement in diagnosis and treat-
ment of NSCLC.

2.3.2 Criteria for significance in DGE analysis

There are specific criteria to define these “significant ex-
pression changes” in DGE analysis to distinguish between
true biological differences and random events. The criteria
are primarily based on statistical thresholds, which include
the p-value, adjusted p-value, and Log2 fold change.

The p-value measures the likelihood that observed differ-
ences in gene expression occurred by chance. A p-value
< 0.05 is commonly used as a cutoff of showing signifi-
cance.[18]

The adjusted p-value (adjp) or the false discovery rate
(FDR) corrects for multiple testing to reduce false pos-
itives by using statistic method. One common method
is known as the x procedure, which adjusts p-values to
account for the number of tests performed. [19] A false
discovery rate (FDR) < 0.05 is often seen as showing sig-
nificance.

Log2 fold change measures the magnitude of expression
differences in two conditions. A 10g2FC > 0 indicates that
genes are up-regulated, while a 10g2FC < 0 indicates that
genes are down-regulated. [20] A common threshold for
significance is |log2FC| > 1. This threshold ensures that
only genes with substantial changes are considered.

In order for the analysis to be both statistically and biolog-
ically meaningful, the expression level of a gene will also
be considered. Genes with low expression may be filtered
out to focus on biologically relevant changes.
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2.3.3 Introducing to the DESeq2 method

DESeq? is a widely used R or Bioconductor package tool
for DGE analysis for RNA-seq data. For instance, Zhai,
Y. et al, (2021) conducted a study using DESeq2 for DGE
analysis in LUAD and have identified 1654 differentially
expressed immune genes (DEIGs) including 436 prognos-
tic genes, verifying specific genes expression level. This
study demonstrates the utility of DESeq?2 in identifying
DEGs and pathways critical to LUAD development.

2.3.4 Key differentially expressed genes (DEGs) in
LUAD and LUSC

Differential gene expression (DGE) analysis was extreme-
ly useful in revealing the molecular distinctions between
LUAD and LUSC. In LUAD, several studies have identi-
fied EGFR and KRAS as significantly upregulated genes,
which drive tumor progression through activation of path-
ways like PI3K-AKT and MAPK signaling. [16] These
genes are often mutated in LUAD, leading to uncontrolled
proliferation and survival of cancer cells. Additionally, a
transcription factor 77F1, is a hallmark of LUAD which
further distinguishing it from LUSC. [21] In contrast,
LUSC is characterized by the up-regulation of 7P63 and
SOX2, which promote squamous differentiation and tumor
growth. TP63, a member of the p53 family, is particularly
critical in maintaining the squamous phenotype, while
SOX2 is involved in tumor aggressiveness. [22] Further-
more, FGFRI amplifications are more common in LUSC
and are associated with poor prognosis, highlighting its
potential as a therapeutic target. [23] Overall, DGE analy-
sis not only elucidates the distinct molecular mechanisms
underlying LUAD and LUSC but also guides the develop-
ment of subtype-specific treatment strategies.

3 Methodology

This primary research aims to identify and analyze the
differential gene expression patterns between lung adeno-
carcinoma and lung squamous cell carcinoma using bioin-
formatics tools including DESeq2, ggplot2, GEPIA, and
Enrichr as well as publicly available databases including
TCGA and KEGG. In order to accomplish the aim, the
comprehensive bioinformatics analysis was divided into
three steps: Differential Gene Expression (DGE) analysis,
disease-free survival (DFS) analysis, and pathway enrich-
ment analysis.

3.1 Differential Gene Expression (DGE) Analy-
sis

This analysis was performed to achieve the first objec-
tive-- to identify key differentially expressed genes in
LUAD and LUSC. TCGA database was selected in this

study because it has sufficient records of LUAD and
LUSC patients to provide data sample for analysis. To
date, numerous studies on NSCLC have utilized the
TCGA database, which demonstrates its credibility and
usability. This widespread adoption further supports the
selection of the TCGA database utilized for the DGE anal-
ysis conducted in this study. To identify DEGs for both
LUAD and LUSC, RNA-seq data for LUAD and LUSC
were obtained from The Cancer Genome Atlas (TCGA)
database through the use of TCGAbiolinks R package.
This requires programming in the environment in RStu-
dio. The generated data include raw read counts for each
gene in tumor and normal samples and were further pro-
cessed by filtering out low-expression genes and normal-
ize read counts by the negative binomial model using the
DESeq?2 package in R. A final document of a table with
differentially expressed genes of LUAD and LUSC was
saved to the chosen working folder when programming.
To obtain a result table of DEGs arranged in ascending or-
der of adjusted p-value, the document of DEGs table was
modified manually using Numbers in Mac Os system. The
results of the DGE analysis were further visualized by
conducting volcano plots and PCA plots using the ggplot2
package in R. The ggplot2 package is a very useful draw-
ing tool that can convert results of DGE analysis (table
of differentially expressed genes with statistical numbers)
into visualization results (such as Volcano plots and PCA
plots). The DESeq2 package in R was the main tool to
perform the differential expression analysis. DESeq2 tool
was selected as the analytical tool due to its accessibility
and enables quick learning and application in DEG anal-
ysis. The package is publicly available and the detailed
tutorial is accessible on the Bioconductor website.

3.2 Disease-Free Survival (DFS) Analysis

The second step was to evaluate the prognostic signifi-
cance of the identified DEGs in LUAD and LUSC pa-
tients, in order to determine the real significance of the
DEGs. Disease-free survival (DFS) analysis was selected
over overall survival (OS) analysis because it specifically
measures cancer recurrence by excluding deaths from
unrelated causes. It provides a clearer evaluation of the
contribution of genetic factors to cancer development and
progression. Single-gene disease-free survival analysis
was performed using GEPIA (Gene Expression Profil-
ing Interactive Analysis), an interactive web-based tool
for survival analysis using TCGA data. [25] The GEPIA
platform offers a highly efficient and user-friendly inter-
face for generating single-gene disease-free survival Ka-
plan-Meier (KM) plots. It only requires simple operation
by clicking: GoPIA > Survival > Survival Plots, followed
by the selection of the specific gene to analyze and the



customization of cutoff values. This platform carries out
statistical calibration and generates visualized survival

plots without any additional manual operation. Eight sig-
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nificant DEGs identified on the volcano plots were select-
ed to perform the disease-free survival analysis.
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Figure 1 A screenshot showing the detailed procedure of using GEPIA

3.3 Pathway Enrichment Analysis

To obtain a conclusion, the final step was to identify key
biological pathways and processes associated with the
most significant DEGs in LUAD and LUSC. Pathway
enrichment analysis was performed using Enrichr. This
tool is free and easy to operate, no programming skills
are required; users can simply input the gene list into the
tool and it automatically analyze the genes through the
database selected, producing a list of biological path-
ways linked to the gene set. The KEGG 2021 Human
database was selected for pathway enrichment analysis.
The database was widely recognized and credible in path-
way enrichment analysis. It features recent updates with
high-quality pathway maps, broad coverage of biological

processes and diseases, and the ability to link genes to
their functional roles in pathways, which is suitable for
identifying key pathway differences of LUAD and LUSC
using significant DEGs.

The top 1000 DEGs of LUAD and LUSC with ascending
order of adjp were entered into the Enrichr gene list. How-
ever, the data table of DEGs was first processed, removing
any non protein-coding genes. This is because the KEGG
database is primarily designed for protein-coding genes.
Including other gene types such as non-coding RNAs
(IncRNA) may lead to incomplete or inaccurate pathway
mapping. Enrichr performed over-representation analysis
(ORA) to identify pathways significantly enriched in the
DEGs. The top significant pathways were visualized by
simple bar graph and table.
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Figure 2 A screenshot showing the detailed procedure of using Enrichr

3.4 Data Availability

All data used in this research are credible and accessible
for anyone to use for research purposes. The TCGA data-
base provides publicly available data that can be accessed
through the Genomic Data Commons (GDC) portal. The
KEGG database is freely accessible at https://www.ge-
nome.jp/kegg/ and is open to the public for research pur-
poses.

3.5 Software Package Versions

The analysis was performed in the RStudio environment
(Version 2024.12.0+467) using the R base package (ver-
sion 4.4.2), DESeq2 (version 1.46.0), and ggplot2 (version
3.5.1).

3.6 Ethical Approval

This research was carried out entirely on a computer,
using computational methods and publicly available
datasets. No animal or human tissue samples were used,
and no experiments involving living organisms were per-
formed. Therefore, ethical approval or patient consent was
not required for this study.

4 Results

4.1 Differential Gene Expression Analysis

For LUAD, a total of 57628 DEGs were generated using
R, including 29052 DEGs with an adjusted p-value (adjp)
<0.05. The top20 most significant protein-coding DEGs
with lowest adjp (in ascending order) include: FAMS83A,
PYCRI, OTUDI, EPASI, STX11, SPAAR, ETV4, TEDC2,
1QGAP3,TOP24, SIPRI, B3GNT3, ACVRLI, RGCC,
EMP2, SEMA3G, SAPCD2, RTKN2, TEK, and PTPN2].
For LUSC, a total of 57489 DEGs were generated, includ-
ing 28866 DEGs with an adjusted p-value<0.05. The top
20 most significant protein-coding DEGs with lowest adjp
(in ascending order) include: TPX2, KIF44, TTK, CEN-
PA, NEK2, HIURP, TROAP, KIF2C, CDCAS, UBE2C,
CDC20, EXOI, KIF23, CCNB2, MYBL2, NCAPH, PLK]I,
BIRCS5, BUBIB, and FAMS&3B. Surprisingly, the adjp of
the top10 genes generated were 0.

4.1.1 Volcano plots

These 20 DEGs displayed in the volcano plot were se-
lected from the DEG table by simultaneously meeting the
significance thresholds for log2 fold change (expression
level) and adjusted p-value.
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Figure 3 Volcano plot (LUAD)
Figure 3 displays 10 up-regulated and down-regulated S/PRI, PECAMI, RGCC, ACVRLI, SEMA3G, and
DEGs of LUAD. Up-regulated DEGs include: FAM834, EMP2. The most significant up-regulated DEG is clearly
PYCRI, AFAP1-AS1, ETV4, TEDC2, TOP2A4, FA- identified as FAM834, and the most significant down-reg-
M83A4-AS1, IOQGAP3, B3GNT3, and SAPCD2. Down-reg-  ulated DEG is OTUDI.
ulated DEGs include: OTUDI, EPAS1, SPAAR, STX11,
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Figure 4 Volcano plot (LUSC)
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Figure 4 displays the top 10 up-regulated and down-reg-
ulated DEGs of LUSC. Up-regulated DEGs include:
CDCAS, KIF2C, TTK, CENPA, TROAP, UBE2C, KI-
F44,NEK2, TPX2, and HJURP. Down-regulated DEGs
include: RAMP2, ROBO4, RTKN2, HIGD1B, CLEC3B,
LANCLI-AS1, RGCC, SPTBNI1, ACVRLI and SECISB-
P2L. The top 10 up-regulated DEGs show minimal
variation due to their extremely low adjusted p-values.
The most significant down-regulated DEG identified is
RAMP?.
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In Figure 5 LUAD PCA plot, tumor samples (colored
blue) and normal samples (colored red) form distinct clus-
ters. This clear separation indicates that tumor and normal
tissues have very different gene expression patterns. Simi-
larly, in Figure 6 LUSC PCA plot, tumor samples and nor-
mal samples also cluster separately, suggesting that LUSC
tumors have a distinct gene expression profile compared
to normal lung tissue.

While both LUAD and LUSC show clear separation be-
tween tumor and normal samples, the pattern of clustering
differs slightly. For example, LUAD tumors cluster more
tightly and regularly, suggesting more homogeneous
gene expression, while LUSC tumors show more spread,
indicating greater heterogeneity. The difference in cluster-
ing could reflect the distinct molecular characteristics of

-25

-50

RGCC was identified as down-regulated DEG in both
LUAD and LUSC, with similar expression levels and ad-
justed p-value. Therefore RGCC is not considered to rep-
resent a differential gene expression difference between
the subtypes.

4.1.2 PCA plots

The plots show how samples cluster based on their gene
expression profiles.

Principle Component Analysis (PCA Plot)
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Figure 6 PCA Plot (LUSC)
LUAD and LUSC.

4.2 Disease-Free Survival Analysis

In this GEPIA single-gene disease-free survival analysis,
8 DEGs (4 LUAD and 4 LUSC) were selected and ana-
lyzed. Among them, 4 DEGs were found to have no prog-
nostic significance, which include: LUAD down-regulated
gene SEMA3G, LUSC up-regulated genes TPX2 and
TTK, and LUSC down-regulated gene ROBOA4.

4.2.1 Kaplan-Meier (KM) survival graphs

Kaplan-Meier (KM) curves illustrate the probability of
survival over time for high and low expression groups.
LUAD

Up-regulated genes: FAMSE3A & FAMSE3A-AS1
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Figure 7 KM graph for FAMS83A
Figure 7 shows that for FAMS834, the gene has a very low
log-rank p-value of 0.0048, with a hazard ratio (HR) of
1.5. This indicates that patients with high FAM834 ex-
pression have a 1.5 times greater risk of cancer recurrence
compared to those with low expression. Similarly, for
FAM83A4-AS1, the log-rank p-value is 0.0024 with an HR
of 1.6; the low log-rank p-value suggests an even stronger
association between high expression and poor disease free
survival. More specifically, the red curve for FAMS83A4
ends at approximately 100 months, while FAMS&3A4-AS1
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Figure 9 KM graph for PECAM1
Figure 9 shows a low log-rank p-value of 0.03 for PE-
CAM]1, with a hazard ratio (HR) of 0.71, meaning that
patients with high PECAM] expression have a 29% lower
risk of recurrence or progression compared to those with
low expression. Since this gene is down-regulated in
LUAD, it indicates that its lower expression is linked to
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Figure 8 KM graph for FAM83A-AS1

ends at around 125 months. In contrast, the blue curve
continues throughout the observed timeline, indicating
better survival for patients with low gene expression in the
long term. These findings demonstrate that FAM&83A4 and
FAMS834-AS1 have prognostic meaning in LUAD, with
high expression levels associating with worse clinical out-
comes.

LUAD

Down-regulated genes: PECAMI & SEMA3G

Disease Free Survival

— Low SEMA3G TPM
—— High SEMA3G TPM

Logrank p=0.88
HR(high)=0.98
p(HR)=0.88
n(high)=238
n(low)=239

Percent survival

0.2

T T I I I
0 50 100 150 200 250
Months

Figure 10 KM graph for SEMA3G
poor survival, demonstrating its prognostic significance.
In contrast, looking at Figure 10, SEMA3G has a high
log-rank p-value of 0.88 and a HR of 0.98 , both values
approach 1. This means that there is no significant asso-
ciation between SEMA3G expression and disease free
survival. Moreover, the overlapping of the KM curves for
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SEMA3G in multiple regions further indicates that its ex-
pression levels do not impact patient outcomes in LUAD.
To further validate this, the blue curve for low expression
of SEMA3G continues throughout the timeline similarly to
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Figure 11 KM graph for TPX2
For up-regulated genes in LUSC, both TPX2 and TTK
show no significant association with disease-free survival
(DFES), considering its prognostic significance. TPX2 has
a log-rank p-value of 0.91 and a HR of 1 (p(HR) = 0.92).
For TTK, the log-rank p-value is 0.13, with an HR of
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Figure 13 KM graph for RAMP2
For RAMP? in Figure 13, the log-rank p-value is 0.058,
with an HR of 0.71, suggesting a marginal trend toward
better outcomes in patients with high RAMP2 expression.
Although the log-rank p-value exceeds the conventional
0.05 threshold for significance, the HR below 1 indicates
that low RAMP?2 expression is associated with worse sur-
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the red curve, meaning the gene does not impact survival.
LUSC
Upregulated genes: TPX2 & TTK
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Figure 12 KM graph for TTK
0.77 (p(HR) = 0.14). Log-rank p-values for both gene are
greater than 0.05, confirming the lack of prognostic signif-
icance.
LUSC
Down regulated genes: RAMP2 & ROBO4
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Figure 14 KM graph for ROBO4
vival. Upon careful interpretation of the KM curve, it is
reasonable to suggest that RAMP2 shows some prognostic
significance, as the curves generally do not intersect; a
low expression of RAMP?2 influences survival and is as-
sociated with poorer outcome, a trend which is consistent
with what is expected. For ROBO4 presented in Figure



14, the log-rank p-value is 0.18, greater than 0.05, and a
HR of 1.3 (greater than 1). It is obvious to see a non-sig-
nificant trend toward worse outcomes in patients with low
ROBO4 expression.

4.3 Pathway Enrichment Analysis

Several significant pathways were identified using the
KEGG 2021 Human database in this pathway enrichment
analysis. Key findings show that the cell cycle pathway

KEGG 2021 Human
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was the most significant in both subtypes, and the DNA
replication pathway was much more significant in LUSC
compared to LUAD. The Fanconi anemia pathway and
progesterone-mediate oocyte maturation pathway were
significant (adjp < 0.1) in both subtypes. Other prominent
pathways include the malaria pathway in LUAD and the
p53 signaling pathway in LUSC.

4.3.1 LUAD key pathways bar graph and table

& O

Clustergram  Appyter

Figure 15 KEGG 2021 Human pathway bar graph (LUAD)
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KEGG 2021 Human Bar Graph Clustergram  Appyter (]
Hover each row to see the overlapping genes.
25 v entries per page Search:
Adjusted p- Odds Combined
Index  Name P-value value Ratio score
1 Cell cycle 3.904e-10 1.089e-7 5.15 111.54
2 Fanconi anemia pathway 0.0003001 0.04186 435 35.30
3 Malaria 0.0007411 0.06892 4.20 30.27
Progesterone-mediated oocyte
4 . sy 0.001419 0.09896 2.86 18.78
5 Oocyte meiosis 0.001991 0.1111 2.52 15.69
6 p53 signaling pathway 0.003313 0.1541 3.04 17.34
7 Homologous recombination 0.003873 0.1544 3.93 21.84
8 Glycosphingolipid biosynthesis 0.006578 0.2294 3.52 17.67
9 DNA replication 0.008277 0.2361 3.82 18.30
10 Maturity onset diabetes of the young 0.008463 0.2361 4.54 21.67
Human T-cell leukemia virus 1
11 infaction 0.01405 0.3564 1.82 7.76
12 Bladder cancer 0.01548 0.3599 3.27 13.63
13 MicroRNAs in cancer 0.02293 0.4526 1.61 6.07
14 ABC transporters 0.02372 0.4526 2.93 10.98
15 Cellular senescence 0.02475 0.4526 1.89 6.97
Complement and coagulation
16 cascades 0.02595 0.4526 2.26 8.26
17 ECM-receptor interaction 0.03160 0.4995 218 7.51
18 Mucin type O-glycan biosynthesis 0.03223 0.4995 3.07 10.56
Alanine, aspartate and glutamate
19 metabolism 0.03578 0.5254 2.98 9.92
20 Axon guidance 0.03984 0.5558 1.72 5.53

Figure 16 KEGG 2021 Human pathway table (LUAD)
In LUAD, the cell cycle pathway was the most significant,  significant pathways (adjp < 0.1) include the Fanconi ane-
as indicated by an adjusted p-value of 1.089*E~-7 in Fig-  mia pathway (adjp = 0.04186), the malaria pathway (adjp
ure 16. This extremely low adjusted p-value suggests that = 0.06892), and the progesterone-mediated oocyte matu-
dysregulation of the cell cycle pathway is associated with  ration pathway (adjp = 0.09896).

aggressive cell division and rapid tumor growth. Other 432 LUSC key pathways bar graph and table
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Figure 17 KEGG 2021 Human pathway bar graph (LUSC)

KEGG 2021 Human Bar Graph Clustergram  Appyter i ]
Hover each row to see the overlapping genes.
25 v entries per page Search:
Index  Name P-value Ag{l"’;tlfl: :l):tti’: Com :'cr::g
1 Cell cycle 7.927e-15 2.227e-12 6.79 220.59
2 DNA replication 9.384e-8 0.00001319 9.60 155.40
3 Fanconi anemia pathway 0.000001848 0.0001731 6.09 80.40
4 Oocyte meiosis 0.00002243 0.001576 3.33 35.61
5 Homologous recombination 0.0001551 0.008718 5.38 47.22
6 Progesterone mediated gocyte 0.0004450 0.02084 312 24.10
7 p53 signaling pathway 0.0009559 0.03837 3.40 23.62
8 Cellular senescence 0.005099 0.1761 2.19 11.56
9 Morphine addiction 0.005639 0.1761 2.63 13.62
10 Cell adhesion molecules 0.01645 0.4623 2.00 8.21
11 Drug metabolism 0.01922 0.4649 217 8.57
12 Estrogen signaling pathway 0.01985 0.4649 2.01 7.86
13 Base excision repair 0.02292 0.4710 3.40 12.86
14 Adherens junction 0.02498 0.4710 242 8.94
15 Mismatch repair 0.02573 0.4710 4.01 14.68
16 Human T-cell leukemia virus 1 infection 0.02682 0.4710 1.71 6.20
17 GABAergic synapse 0.03366 0.5440 2.15 7.28
18 Rap1 signaling pathway 0.03485 0.5440 1.69 5.66
19 Phenylalanine metabolism 0.05018 0.7321 4.08 12.21
20 Renin secretion 0.05633 0.7321 2.15 6.19

Figure 18 KEGG 2021 Human pathway table (LUSC)
In LUSC, the cell cycle pathway was highly significant, an adjusted p-value of 0.00001319 compared to a non-sig-
with an adjusted p-value of 2.227*E~-12, which is sig-  nificant adjusted p-value of 0.2361 in LUAD. LUSC also
nificantly lower than in LUAD. Additionally, the DNA  contained a greater number of pathways with adjp lower
replication pathway was more significant in LUSC with  than 0.1, including the Fanconi anemia pathway (adjp =

13
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0.0001371), oocyte meiosis pathway(adjp = 0.001576),
homologous recombination pathway (adjp = 0.008718),
progesterone-mediated oocyte maturation pathway(adjp =
0.02084), and the p53 signaling pathway (adjp = 0.03837).

5 Discussion

5.1 Limitations

This study exist several limitations. Firstly, all the results
obtained still need to be rigorously evaluated in clinical
practice. Secondly, the selection of databases may influ-
ence the outcomes, as different databases contain different
datasets, which could lead to discrepancies in the find-
ings. The disease-free survival analysis was conducted
on a limited number of genes using single-gene survival
analysis. Performing a multi-gene survival analysis could
enhance the precision of the results. Moreover, the differ-
entially expressed genes without prognostic significance
were included for pathway enrichment analysis, which
may dilute the relevance of the identified pathways. To
improve the current study, non-prognostic DEGs like
SEMA3G, TPX2, TTK, and ROBO4 could be excluded to
obtain more biologically meaningful pathways.

5.2 Explanation of DGE Visualizing Plots
5.2.1 Volcano plots

Volcano plots show the relationship between gene expres-
sion changes and statistical significance. Genes on the
top left and top right quadrants are significant DEGs with
large fold changes and extremely low p-values. In Figure 3,
FAMS834 is located in the top right quadrant, meaning that
this gene has both a high positive log2 fold change (high
expression in tumor tissue) and a highly significant low
adjusted p-value, which reveals its significance in LUAD.
Genes clustered near the center of the plot (around log2
fold change = 0) means that they are not significantly dif-
ferentially expressed. These genes have a low Log2 fold
change meaning that they have low expression and there-
fore not counted as DEGs. Comparing the distribution of
genes in Figure 3 and 4, the genes are similarly expressed
but in Figure 4, DEGs locates more to the top, the labeled
10 up-regulated DEGs of LUSC has much lower adjp
which shows higher statistical significance. This suggests
that the LUSC up-regulated genes are more consistently
and strongly associated with the tumor phenotype com-
pared to LUAD. The top 20 DEGs visualized on the vol-
cano plots for both LUAD and LUSC are characterized
by extremely low adjusted p-values (approaching zero),
indicating a high degree of statistical significance.

5.2.2 PCA plots
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Samples with similar expression profiles cluster together,
which helps to identify patterns. The separation between
tumor and normal samples in both Figure 5 and Figure 6
supports the idea that cancer could induces widespread
changes in gene expression, including up-regulation of
genes involved in cell proliferation or immune evasion,
as well as down-regulation of genes involved in cell
apoptosis and the regulation of normal cell functions.
To validate, Zengin, T. and Onal-Siizek, T. (2021) state
that LUAD signature genes plays role in immune-related
pathways that are different from those in LUSC. Although
LUAD and LUAC have overlapping signature gene path-
ways and share similar differential expression pathways,
including a total of 2106 DEGs, they cluster separately in
PCA plot. The difference in clustering also highlights the
potential for using gene expression profiles to distinguish
tumor from normal tissue, which could improve diagnosis
and treatment for LUAD and LUSC.

5.3 Evaluating Prognostic Significance of DEGs

5.3.1 Further interpretation of KM graphs

Kaplan-Meier (KM) survival graphs were generated for
significant DEGs from the volcano plots, stratifying pa-
tients into high expression (red curve) and low expression
groups (blue curve) based on median expression. A clear
gap between the blue and red curves indicates that the
DEG impacts survival. For instant, the KM curves for
the up-regulated genes FAM83A4 and FAM83A-AS1 in
LUAD (Figure 7 and 8) exhibit a clear gap with no in-
tersection before 100 months. As a counter-example, the
KM graph for the up-regulated gene 77K in LUSC shows
overlapping survival curve before 50 months, with the
high-expression (red) curve even showing higher survival
than the low-expression (blue) curve, which is opposite to
the expected result of high-expression linked with worse
survival. The KM curves of both 77K and TPX2 showed
overlapping survival curves, reinforcing the weak prog-
nostic significance of 7PX2 and 77K in LUSC.

5.3.2 Biological and clinical implications

As the LUAD up-regulated genes FAM83A and FA-
MS83A-AS1 have strong prognostic significance, they are
suitable as potential therapeutic targets for LUAD treat-
ment. This is supported by Zheng, Y.-W. et al. (2020) ,
who state that the over-expression of FAMS83A4 enhanced
the proliferation, colony formation, and invasion of lung
cancer cells, and is associated with poor prognosis. Simi-
larly, increased FAMS83A-AS1 expression leads to LUAD
cell proliferation and metastasis, further promoting NS-
CLC progression via the ERK signaling pathway. [24]
Therefore, inhibiting FAMS83A4 and FAM83A4-ASI expres-
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sion may improve patient survival by reducing tumor
aggressiveness, consistent with their characterization as
oncogenes. Similarly, the LUAD down-regulated gene
PECAM1 has protective role when higher expressed, sug-
gesting that enhancing its expression or activity could be
a new strategy for LUAD treatment. This is validated by
Cao, S. et al. (2021), who carried out a survival analysis
showing that high expression of PECAM1 was associated
with improved survival. Furthermore, the study found
that the overall survival of the PECAM1 high-expression
group of postoperative patients with lung cancer shows a
better trend than the low-expression group. In LUSC the
statistically significant up-regulated genes TPX2 and TTK
are not associated with patient survival, suggesting that
LUSC mechanism relies less on tumor aggressiveness.
The lack of prognostic significance of TPX2 and TTK also
emphasizes the molecular heterogeneity of this subtype
and the need for subtype-specific therapeutic strategies.
Lastly, the marginal significance of LUSC down-regulated
gene RAMP? requires further investigation to determine
its real prognostic value in LUSC.

5.4 Key Pathway Differences and Processes

The pathway enrichment analysis revealed various dis-
tinct molecular pathways in LUAD and LUSC. The cell
cycle pathway is a biological process by which cells
grow, replicate DNA, and undergo mitosis. It was the
most significant pathway in both subtypes. However, by
comparing the bar graphs in Figure 15 and 17, cell cycle
pathway in LUAD shows a higher proportion of signifi-
cance than LUSC. This suggests that dysregulation of the
cell cycle pathway is a critical driver of tumor growth in
both subtypes, but LUAD may rely more heavily on cell
cycle dysregulation for its progression. Furthermore, this
discovery aligns with the disease-free survival analysis
and previous studies showing that LUAD often exhibits
over-expression of genes involved in cell cycle regulation,
such as FAM83A4 and FAMS83A-AS1, which promote cell
proliferation and are associated with worsened survival.
Another notable difference was that the DNA replication
pathway was much more significant in LUSC (adjp =
0.00001319) than in LUAD (adjp = 0.2361), meaning that
the DEGs involved in this biological process are highly
active. This suggests that LUSC tumors may rely more
heavily on rapid DNA replication for growth compared
to LUAD tumors, which rely more on cell cycle dysreg-
ulation. Thus, this could indicate that LUSC tumors are
rapidly replicating their DNA, potentially becoming more
aggressive or resistant to treatment.

The malaria pathway was a unique pathway in LUAD
with a relatively high significance (adjp = 0.06892). This
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pathway refers to the biological process by which the
malaria parasite interacts with human cells during infec-
tion. While this pathway is not directly related to cancer,
it could provide unique insights into immune evasion and
stress responses, which are also critical for cancer cell
survival.

6 Conclusion

In conclusion, this comprehensive bioinformatics anal-
ysis of lung adenocarcinoma and lung squamous cell
carcinoma reveals significant differences in their gene
expression profiles and molecular pathways, providing
further insights into their distinct biological behaviors.
To achieve the aim of this research, pathway enrichment
analysis was carried out to reveal the differential gene
expression difference of two subtypes. Key findings show
difference in proportion of the most significant pathway-
cell cycle pathway in both subtypes, with LUAD showing
a stronger reliance on cell cycle dysregulation, supported
by the over-expression of oncogenes like FAMS83A4 and
FAMS83A4-AS1, which promote tumor growth and worsen
survival outcomes. In contrast, LUSC exhibited greater
significance in the DNA Replication pathway, suggesting
a reliance on rapid DNA replication, which may contrib-
ute to its aggressiveness or treatment resistance. Unique
pathway- Malaria pathway have been found in LUAD,
providing new insights into immune evasion and stress re-
sponses. these discoveries show the difference in molecu-
lar basis and mechanisms of LUAD and LUSC. Addition-
ally, the disease-free survival analysis further validated the
prognostic significance of key genes, with FAME3A4 and
FAMS83A4-AS1 in LUAD and the marginal significance of
RAMP?2 in LUSC providing potential therapeutic targets.
The clear separation of tumor and normal samples in PCA
plots and the distinct clustering patterns in volcano plots
emphasize the widespread changes in gene expression
caused by cancer. These key findings not only emphasize
the molecular heterogeneity between LUAD and LUSC
but also highlight the importance of subtype-specific
approaches in diagnosis, prognosis, and treatment of NS-
CLC subtypes. By integrating differential gene expression,
survival data and pathway analysis, this study contributes
to a deeper understanding of the molecular mechanisms of
LUAD and LUSC and the exploration of more precise and
effective therapeutic strategies.
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