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Abstract:

Sequencing remains the reference standard for tumor
mutational burden (TMB) but is costly, slow, and tissue
intensive. Routine hematoxylin-and-eosin whole-slide
images (WSIs) are inexpensive to digitize, motivating
interest in whether Al can estimate TMB to support triage
and prioritize sequencing. This review synthesizes more
than thirty studies of TMB-from-WSI, standardizing
task framing (primarily binary TMB-high versus TMB-
low, with occasional regression) and evaluation practice
(AUROC/AUPRC, external validation, calibration, and
decision-curve analysis). Reported internal performance
frequently falls around AUROC 0.70-0.82; independent-
site external results are lower, approximately 0.65-0.73,
yet directionally supportive. Multimodal fusion of H&E
with basic clinical variables and the use of stronger
representation self-supervised encoders and pathology
foundation models-improve robustness, but performance
remains sensitive to label definitions, class prevalence,
tumor purity, and site/scanner domain shift. Reporting
calibration quality, clinical net benefit, and subgroup
analyses is inconsistent across studies. Overall, the current
evidence supports TMB-from-WSI as a tool for triage
and sequencing prioritization rather than a replacement
for sequencing. This review recommends multicenter
external validation, a minimal reporting set with a practical
“benchmark card,” and post-deployment monitoring of
discrimination, calibration, and drift. Foundation and
vision—language models with few-shot adapters are
promising for cross-site transfer; prospective multicenter
evaluations will be pivotal for clinical credibility.

Keywords: tumor mutational burden; whole-slide imag-
ing; multiple-instance learning; self-supervised learning;

foundation models
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1. Introduction

Molecular biomarkers such as tumor mutational burden
(TMB) and microsatellite instability (MSI) increasingly
guide immunotherapy selection and prognosis in solid
tumors. However, comprehensive sequencing is often
required to ascertain these biomarkers, and it carries prac-
tical constraints-cost, turnaround time, and tissue require-
ments-that limit access and delay decisions in routine care
[1-3]. In contrast, hematoxylin-and-eosin (H&E) whole-
slide images (WSIs) are produced for almost every patient
at negligible incremental cost, motivating a complemen-
tary strategy: inferring molecular surrogates directly from
routinely available morphology.

Over the past five years, deep learning on WSIs has
progressed from weakly supervised multiple-instance
learning (MIL) to hybrid supervision and, more recently,
self-supervised and large-scale foundation models. Across
lung, colorectal, and other cancers, internal test perfor-
mance around AUROC 0.70-0.80 has been reported for

predicting TMB or MSI from H&E slides [4—7]. Yet gen-
eralizability remains the central weakness: performance
often degrades under domain shift introduced by staining
protocols, scanners, or patient populations, and truly inde-
pendent multicenter validation is still uncommon [8—10].
This review synthesizes evidence on predicting TMB di-
rectly from H&E WSIs and organizes the topic as follows.
As shown in Figure 1, the end-to-end workflow comprises
tiling and quality control, feature extraction (CNN/SSL/
foundation), MIL aggregation, and a slide-level classifier/
regressor that outputs predictions and attention/uncer-
tainty maps. Section 2 formalizes the tasks and metrics
(e.g., TMB-H vs TMB-L, AUROC/AUPRC, calibration,
decision-curve analysis). Section 3 surveys methods by
supervision and representation (MIL, hybrid/graph, SSL,
foundation models). Section 4 consolidates per-cancer ev-
idence with an emphasis on external, multicenter results.
Sections 5-7 cover datasets/benchmarks, clinical transla-
tion, and open challenges.

H&E WSI
(40x/20x; .svs/.ndpi)

—

Tiling & QC
(e.g., 256-512 px @20x;
blur/artefact filter, color check)

Feature Extraction
(CNN / SSL / Foundation)

—

=

Output
(Prediction/Attention
Map/Uncertainty
Use cases: triage/prioritize

(—

MIL Aggregation
(Attention / Transformer / GNN)

Classifier/Regressor
(TMB-H vs TMB L
continuous TMB)

(—

Fig 1. End-to-end workflow for WSI-based TMB prediction. WSIs are tiled and quality-
checked; features are extracted by CNN/SSL/foundation encoders, tiles are aggregated via
MIL (attention/transformer/GNN), and a slide-level head produces predictions and attention/
uncertainty maps for triage/prioritization.

2. Tasks & Metrics

This section defines what is being predicted and how suc-
cess is measured, so results in this section are comparable
on a clinically meaningful scale. This review first spec-
ifies task scope and label rules, then the unit of analysis
and split protocol, followed by primary metrics (AUROC/
AUPRC), validation schemes (internal vs external), and
clinical utility (calibration and decision-curve analysis).

2.1 Problem definitions and labels

This section defines the predictive tasks and the metrics
by which model performance would be judged, so that
results reported later can be interpreted on a common and
clinically meaningful scale. In pathology-based biomark-
er inference, downstream tasks fall into four categories:

(i) binary classification, (ii) multiclass classification, (iii)
regression of continuous targets, and (iv) time-to-event
prediction. Examples include classifying tumor mutational
burden—high (TMB-H) versus tumor mutational burden—
low (TMB-L), and microsatellite instability—high (MSI-H)
versus microsatellite stable (MSS) in binary; mutations
per mega base for regression; and overall/disease-free
survival for time-to-event. For WSI models, labels are
almost always defined at the patient or slide level, while
predictions arise from tile-level features aggregated by
MIL or related schemes. Ground truth for TMB typically
comes from panel sequencing or whole-exome sequenc-
ing (WES) with heterogeneous counting rules and thresh-
olds; for MSI, reference standards include PCR, IHC for
MMR proteins, or NGS. These choices materially affect
cross-study comparability and must be reported explicitly



[11-13].

2.2 Evaluation dimensions

Evaluation should answer three mutually independent
questions: discrimination, calibration, and clinical utility.
Discrimination assesses whether the model ranks cases
correctly; calibration evaluates whether predicted proba-
bilities are numerically meaningful; clinical utility exam-
ines whether using the model improves decisions for real
patients [11-13].

2.3 Discrimination metrics

For binary or multiclass tasks, report AUROC with 95%
confidence intervals (bootstrap or DeLong) [14-16]. Un-
der class imbalance, include AUPRC, as it is more sensi-
tive to prevalence than AUROC. Provide threshold-based
summaries-sensitivity/recall, specificity, precision/PPV,
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NPV, Fl-and confusion matrices at clinically relevant
cutoffs (e.g., the literature threshold for TMB-high). For
regression tasks, report R?2, MAE, and MSE, and correlate
predictions with reference values; for survival, report Har-
rell’s C-index and time-dependent AUROC [17].

2.4 Calibration and reliability

Because deployment decisions rely on probabilities, cal-
ibration should be evaluated using reliability plots, Brier
score, and Expected Calibration Error (ECE). When mis-
calibration is detected, Platt scaling or isotonic regression
on a held-out set should be considered, and calibration
after threshold tuning should be re-checked. Poorly cal-
ibrated models can achieve high AUROC yet be unsafe
for triage [18]. Figure 2 shows contents discussed in this
section.
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Figure 2. Reliability plot with perfect-calibration reference (dashed). Points are per-bin mean
predictions vs observed event rates; binning and ClIs are detailed in Section 2.4.

2.5 Clinical utility and decision analysis

Clinical utility is commonly summarized with deci-
sion-curve analysis (DCA), which plots net benefit across
threshold probabilities and situates model use relative
to “treat-all” and “treat-none” strategies. When applica-
ble, studies also report reclassification metrics (e.g., Net
Reclassification Improvement) and operational conse-
quences, such as the proportion of sequencing that could

be avoided at a prespecified miss rate for TMB-high.
Publications usually specify the intended operating point
and provide a brief clinical rationale for that choice [15].
Figure 3 shows contents discussed in this section.
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Figure 3. DCA comparing the model with treat-all and treat-none strategies across threshold
probabilities; the vertical line marks the intended operating point (details in Section 2.5).

2.6 Validation design and leakage control

Validation designs in this area generally rely on pa-
tient-level splits, keeping all slides from the same patient
within a single fold, and avoiding any mixing of tiles from
one slide across training and test. Model development
commonly uses stratified hold-out or nested cross-valida-
tion, while an untouched external validation cohort from
an independent center/scanner/population is retained.
Where feasible, multicenter evaluation is used to probe
domain shift attributable to staining protocols, scanners,
or case mix. In line with current reporting guidance,
hyperparameters are not tuned on the external set, pre-
processing is kept consistent across splits, and scanners,
magnifications, staining protocols, and any color normal-

ization procedures are documented [11-13].

2.7 Minimum reporting set (the checklist)

Major reporting frameworks (TRIPOD-AI, STARD-AI,
SPIRIT-AI/CONSORT-AI, DECIDE-AI) converge on a
core set of items for reproducible WSI-based biomarker
studies. Table 1 provides a compact checklist tailored to
TMB prediction from H&E WSIs. At minimum, studies
describe the task and ground-truth rules, characterize the
cohort and acquisition pipeline, specify preprocessing/
tiling, document split strategy and leakage controls, report
discrimination, calibration, and decision analysis with
uncertainty, present external/multicenter results and sub-
group analyses, and provide artifacts for reproducibility
(code/weights/tiling manifest) [11-14,19].

Table 1. Minimum reporting set for WSI-based TMB prediction (aligned with TRIPOD-AI/STARD-AI/DECIDE-

Al).
Field What to report
Task type & label rules Primary task (binary TMB-H vs TMB-L or regression) and label source/

cutoffs; assay/panel noted

Class prevalence & dataset sizes

Scanners, staining, magnifications, color normalization

Prevalence of TMB-H (%); N per split at patient/slide/tile levels
Vendors/models, staining protocols, objective magnifications, color nor-
malization method
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Discrimination

Calibration

Clinical utility

AUROC (£95% CI), AUPRC; confusion matrices at chosen cutoffs
Brier/ECE and a reliability plot (slope/intercept if available)
Decision-curve analysis; chosen operating point with PPV/NPV/Sens/
Spec and rationale

External/multicenter & subgroups

Independent site/multicenter results; subgroup analyses (site/scanner/
stage/ancestry/sex)

Model availability & reproducibility

Code/weights availability; random seeds; versioned data/commit hashes

3. Methods

Building on the task framing in Section 2, this section
organizes model design choices by supervision level and
representation learning, highlighting how each family
trades off label cost, robustness, and interpretability.

3.1 Weakly supervised multiple-instance learn-
ing (MIL) and attention

Whole-slide images are partitioned into tiles (“instances”)
and grouped into slide-level bags; models learn to map
bag-level labels from instance-level features without re-
gion annotations. Attention-based pooling and transform-
er-style aggregators (e.g., CLAM-like attention pooling
or TransMIL-like architectures) highlight informative
tiles while suppressing noise [9,10]. Typical pipelines
extract tile embeddings with a CNN/ViT backbone (ei-
ther ImageNet-pretrained or WSI-pretrained), then train a
slide-level aggregator with cross-entropy or focal losses.
Multi-scale tiling (e.g., 5x/10%/20%) and hard-example
mining are frequently used to capture morphology at dif-
ferent resolutions and reduce label noise. Taken together,
these design choices yield a pragmatic trade-off: the mod-
el can be trained at scale using only slide-level labels, yet
it still produces tile-level attention maps that pathologists
can review. This makes MIL pipelines attractive for retro-
spective cohorts and workflows where region annotations
are scarce. At the same time, the reliance on weak labels
and patch sampling can make performance brittle under
stain/scanner or population shifts, and attention may occa-
sionally concentrate on non-causal correlates (“saliency il-
lusions”), underscoring the need for external checks [9,10].

3.2 Hybrid supervision, label-noise mitigation,
and graph-structured MIL

Hybrid supervision combines slide-level labels with a
small number of region-level annotations or high-confi-
dence pseudo-labels to refine localization and reduce label
noise. Typical designs include partial-label learning, con-
sistency regularization, and curriculum schedules that pro-
gressively trust finer-grained supervision while retaining

slide-level constraints. Graph-structured MIL treats tiles
as nodes connected by spatial proximity or tissue-type
similarity, enabling message passing that captures glandu-
lar architecture, stromal context, and tumor-immune inter-
faces [20]. In practice, hybrid supervision often improves
robustness and interpretability at the cost of additional
annotation effort and engineering complexity; pseudo-la-
bel pipelines can also propagate early mistakes if not care-
fully curated. Graph-based approaches frequently pair a
pretrained tile encoder with a graph neural network (GNN)
or transformer-style graph aggregator, yielding competi-
tive slide-level performance and saliency maps that better
align with tissue structures [20].

3.3 Self-supervised pretraining and retrieval/
representation learning

Self-supervised learning (SSL) pretrains encoders on
unlabeled WSIs using objectives such as contrastive
alignment or masked-region reconstruction, then fine-
tunes on downstream tasks [21]. Compared with training
from scratch, SSL backbones generally yield more stable
features under small data regimes and improved cross-
site generalization [21]. Instance retrieval systems (e.g.,
SISH-style nearest-neighbor search) leverage SSL embed-
dings to find morphologically similar regions, supporting
both case review and weakly supervised labeling [21].
In practice, however, realizing these benefits introduces
operational trade-offs: the same design choices that en-
able powerful representations-strong augmentations, large
pretraining corpora, and domain-specific pipelines-also
determine stability, cost, and bias characteristics. Com-
mon pitfalls include collapse without sufficiently strong
augmentations, heavy computation during pretraining, and
augmentation choices that inadvertently encode dataset or
site-specific bias [21].

3.4 Foundation and vision—language models

Foundation models are trained at scale (often millions of
tiles across diverse centers) to produce reusable pathology
encoders that transfer across tasks and institutions [22—24].
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For WSI-level inference, a common recipe freezes the
pretrained encoder and learns a lightweight adapter or
MIL aggregator; few-shot or parameter-efficient fine-tun-
ing is also used [22-24]. Vision—language variants pair
images with pathology reports to align visual features
with clinical semantics, enabling zero-/few-shot transfer
and text-conditioned outputs [22—-24]. Evidence to date
suggests stronger cross-hospital robustness than task-spe-
cific models, although gains depend on pretraining diver-
sity and governance of data overlap, privacy, and model
updates [22-24].

4. Applications

With the methodological landscape in view, this section
consolidates evidence on predicting tumor mutational
burden (TMB), and, secondarily, microsatellite instabil-
ity (MSI), from routine H&E whole-slide images across
major cancer types, emphasizing external and multicenter
validity; it highlights task setups, representative perfor-
mance ranges, sources of heterogeneity, and practical con-
siderations for clinical translation.

4.1 Tumor Mutational Burden (TMB)

Early studies explored direct TMB prediction from lung
adenocarcinoma H&E slides using CNN-style pipelines,
followed by MIL-based approaches and multi-scale de-
signs [5,6,8]. Across internal test sets, reported AUROC
typically falls in the 0.70-0.80 range, with performance
depending on cohort composition, tumor purity, and
patch sampling strategies [5—8]. External validation
remains limited but is gradually increasing, including
multicenter analyses in squamous cell carcinoma settings
[7]. Comparability across studies is affected by hetero-
geneous ground-truth definitions (e.g., panel vs. WES,
counting rules) and threshold choices for defining “TMB-
high”[5-8]. Practical takeaways include reporting prev-
alence, clarifying label sources, and probing robustness
under site/scanner changes before considering triage use
[5-8].

4.2 Microsatellite Instability (MSI)

Seminal work demonstrated the feasibility of predicting
MSI directly from routine H&E slides, and subsequent
studies expanded to multicenter validations across gastro-
intestinal cancers [1-3]. Weakly supervised frameworks
further explored molecular pathways and mutation pat-
terns in colorectal cancer, reinforcing the link between
morphology and genotype [4]. Performance varies with
cancer subtype and population; prevalence differences
and site-specific workflows can introduce domain shift,

underscoring the need for external and cross-population
testing [1-3]. Attention maps in several studies align with
histopathologic hallmarks implicated in mismatch-repair
deficiency, supporting face validity while not proving cau-
sality [1-4].

4.3 Radiomics as comparator

Radiomics seeks to predict immuno-oncology—relevant
signals (including TMB or response surrogates) from CT/
PET images, offering whole-organ coverage without tis-
sue sampling. Compared with pathology-based models
that capture micro-architectural cues at cellular scales,
radiomics emphasizes macroscopic heterogeneity; the two
modalities are therefore complementary rather than inter-
changeable. In workflows, one pragmatic view is to use
radiology to flag candidates for biopsy and WSI acquisi-
tion, then use pathology-Al to prioritize sequencing when
tissue is limited.

5. Datasets & Benchmarks

To interpret metrics consistently, this section details
datasets and evaluation setups and introduces a practical
benchmark card for evidence extraction. Typical WSIs are
FFPE H&E slides scanned at 20x or 40x%, with heteroge-
neous formats and scanners; slide-level labels are patient-
or block-derived and may not localize tumor regions.

5.1 Landscape and dataset types

Public research datasets and institution-specific clinical
repositories serve different purposes and exhibit differ-
ent biases. Public sets enable comparability and ablation
studies, while clinical repositories better reflect workflow
constraints, slide variability, and case mix seen in practice.
Common public sources include multi-cancer archives
and challenge datasets; this review uses them primarily
for methods development and sanity checks, not as surro-
gates for deployment evidence [11-13].

5.2 Preprocessing and tiling conventions

Pipelines commonly apply tissue detection, color normal-
ization, and tiling into fixed-size patches (e.g., 256512
px at a defined magnification). Magnification must be
reported alongside the physical resolution (um/px), since
“20x” is not standardized across scanners. When multiple
magnifications are used, document how tiles are sampled
and fused (multi-scale MIL, pyramids) to ensure repro-
ducibility.

5.3 Splits, external validation, and leakage con-



trol

Across published benchmarks, splits are typically defined
at the patient level, thereby avoiding cross-contamination
of slides or tiles; preprocessing pipelines are kept iden-
tical across splits to prevent drift. External validation is
usually performed on a sealed cohort from an independent
site/scanner/population, and multicenter testing is often
included to probe domain shift [11-13,19].

Consistent with current reporting guidance, thresholds and
hyperparameters are not tuned on the external set; instead,
studies document scanners, staining protocols, magnifi-
cations (with pm/px), and color normalization as part of
a concise “benchmark card” to support reproducibility
[11-13,19].

5.4 Current benchmarks‘ limitations

Most public splits lack sealed, no-peek external sites and
rarely stress-test scanner/stain shifts or prevalence chang-
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es. Few benchmarks report calibration, decision-curve
analysis, or cost—benefit under realistic operating points.
Subgroup performance by site, scanner, stage, and demo-
graphics is inconsistently reported, complicating fairness
and generalizability claims.

5.5 A practical “benchmark card” (minimal
fields)

In line with current reporting guidance, this review sum-
marizes a compact benchmark card in Table 2. The card
captures dataset scope, ground-truth rules and thresh-
olds, cohort composition and acquisition, preprocessing/
tiling, split strategy and leakage controls, core metrics
(discrimination with uncertainty, calibration, and decision
analysis), external/multicenter results with subgroup anal-
yses, and basic reproducibility artifacts. Publishing code/
weights together with a versioned slide manifest enables
exact reproduction of tiling and sampling [11-13,19].

Table 2. Benchmark card for WSI-based TMB prediction (minimal fields aligned with TRIPOD-AI/STARD-AY/
DECIDE-AI) [11,14,19].

AUROC (int/
Study Cancer Task Data External? N (in Method
ex
h i Histological-subt fea-
Sadhwanilyyap | TMB-HL TCGA LUAD Partial 0.71 istological-subtype fea
(2021) [5] tures + clinical
CNN (Inception v3) + Ran-
Jain (2020) [6] | LUAD TMB-H/L TCGA LUAD No / (Inception v3) + Ran
dom Forest
Dammak . Transfer learning CNN
LUSC TMB-H/L Iticent Y 0.65
(2023) [7] multicenter es (VGG16)
. 0.818 (CV) / Multi-scale weak superlvi-
Chen (2022) [8] | Multiple TMB-H/L TCGA, CPTAC Yes 0732 sion + graph aggregation
' (MC-TMB)
Self-supervised retriev-
Ch 2022 WSI retrieval TCGA, CPTAC,
en (2022) 1\ 4 tiple fetrieva Yes / als (SISH; VQ-VAE +
[21] BWH
DenseNet)

6. Clinical Translation & Reporting

Translating reported performance into practice requires
governance beyond AUC. In line with reporting and
evaluation guidance, clinical claims rest on transparent
methods and fit-for-purpose designs: TRIPOD-AI for
prediction models, STARD-AI for diagnostic accuracy,
SPIRIT-AI/CONSORT-AI for interventional trials and
DECIDE-ALI for early clinical evaluation [11-14,19]. Typ-
ical elements include prespecified endpoints, model lock
before any external testing, documented data provenance,
and enough procedural detail for replication. Evidence
usually follows a validation ladder-internal validation

first, then sealed external-site testing, and, where feasible,
multicenter prospective studies [11-14,19]. Practical de-
ployment tends to keep a pathologist in the loop, define
operating thresholds and reflex-to-sequencing rules, and
integrate with LIS/EHR; calibration maintenance and drift
monitoring are scheduled, with audit logs and rollback
procedures when thresholds or models change [11,18].
Decision-curve analysis (DCA) complements discrimina-
tion metrics by summarizing net benefit across thresholds;
reporting operational consequences (e.g., the proportion
of sequencing avoided at a fixed miss rate) clarifies val-
ue [15]. Governance spans data-use agreements, privacy
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protection, change control for model updates, and fairness
auditing with subgroup reporting by site, scanner, stage,
and demographics [11-14,19].

7. Discussion

This section synthesizes the main failure modes that sep-
arate promising discrimination from deployable clinical
utility-domain shift, data/label quality, interpretability,
reporting gaps, and post-deployment maintenance-and ar-
gues for a pragmatic path forward grounded in externally
validated evidence and standardized reporting.

Performance drops under domain shift-differences in
staining, scanners, and case mix-remain the primary risk;
larger foundation models coupled with diverse pretraining,
and few-shot adapters improve cross-site transfer but do
not eliminate the problem [22-24]. Ceiling performance
is further constrained by tumor purity, slide quality, and
label noise; hybrids that add limited region cues or graph
structure can help localize signal and reduce propagation
of noise [4, 20]. Interpretability via attention or saliency
maps enables slide review yet can surface non-causal cor-
relates, reinforcing the need for human-in-the-loop verifi-
cation [9,10]. Beyond discrimination, reproducibility and
reporting are uneven-calibration, decision-curve analysis,
and subgroup reporting are inconsistently presented-hence
alignment with Al reporting guidance (e.g., TRIPOD-AI,
SPIRIT-AI/CONSORT-AI, DECIDE-AI) is essential
for credible claims and fair comparison [11-14,19]. For
maintenance, clinical deployment should specify audit-
able update policies and post-deployment monitoring of
discrimination, calibration, and case-mix drift; regula-
tory-grade practice further requires multicenter external
testing and laboratory validation frameworks [11-14,19].
Looking ahead, foundation/vision—language pipelines plus
standardized external test sets and early-phase multicenter
evaluations offer the most credible route to safe triage/pri-
ority sequencing use in the near term [22-24].

8. Conclusion

H&E WSI-based models can infer molecular surrogates
such as TMB and MSI with moderate discriminatory
performance while leveraging ubiquitous, low-cost pa-
thology data. Evidence to date supports their role as triage
or prioritization tools rather than full replacements for
sequencing, given domain shift, label heterogeneity, and
calibration concerns. Progress will hinge on diversified
pretraining, sealed external and multicenter validation,
rigorous reporting (TRIPOD-AI/STARD-AI), and gover-
nance for updates and fairness.
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