The Transformative Role of AI in Lung Cancer Treatment

Yuehan Sun^{1,*}

¹NYU Steinhardt, New York University, New York, USA *Corresponding author: ys7020@ nyu.edu

Abstract:

Lung cancer has long cast a shadow over countless families, presenting a disease that is often diagnosed too late, when treatment options narrow and hope becomes harder to hold onto. Its insidious nature lies in those early, silent stages, where symptoms are absent but the opportunity for intervention is greatest. Despite significant advances in imaging and genomics, lung cancer remains a leading cause of cancer-related mortality, often due to delays in diagnosis and the inherent challenges of tailoring treatments for each unique patient. This struggle highlights a critical gap: current healthcare systems, reliant on human interpretation alone, are often overwhelmed, leading to variations in care and missed opportunities for early intervention. To address this, this review explores how artificial intelligence can serve as a powerful partner to medical providers, enhancing their ability to detect tumors in the early stages, provide precision medicine, and improve patient outcomes. By examining real-world artificial intelligence (AI) applications, this work aims to illustrate a future where technology and human expertise collaborate not only to save lives but to make precision medicine an accessible reality for all.

Keywords: AI in healthcare, lung cancer, precision medicine, Machine Learning, Delayed Diagnosis,

1. Introduction

Lung cancer remains one of the most challenging diseases to diagnose and treat effectively. Each year, millions of people worldwide receive late-stage diagnoses, at which point survival rates are markedly reduced and therapeutic options are limited. In fact, only 16% of lung cancers are detected at early stages [1]. This is frustrating given that lung cancer is often curable if detected early. Moreover, many of

the current screening and treatment methods have limited success in patient outcomes. For instance, screening methods such as sputum cytology and chest radiographs (CXR) that are commonly used for detecting lung abnormalities have not been found to be effective in reducing mortality rate among patients with lung cancer [1]. When interpreting imaging, it is often hard to distinguish between the different types of nodules, leading to errors in detection. In this context, AI is beginning to make a profound difference in

patient outcomes. Artificial intelligence is reshaping lung cancer care by disease detection, treatment personalization, and healthcare efficiency. Instead of taking the place of physicians, these intelligent systems enhance clinical expertise, assist better clinical decision-making, and save lives associated with inadequate treatments or delayed diagnoses.

2. Early disease detection

Lung cancer's high mortality rate can be attributed to late diagnosis and current limitations in screening. Late diagnosis is a result of asymptomatic early stages [2]. By the time patients are finally diagnosed, five-year survival rates dramatically decrease from 56% for the early stage to less than 5% for the advanced stage [1]. This stark difference emphasizes the importance of early detection for patients who have lung cancer. Equally important is the emotional cost: patients who receive a late diagnosis frequently endure more intensive medical care, heavier financial loads, and the psychological anguish of knowing that their chances might have been improved with early intervention.

Fortunately, studies on adopting AI tools for lung cancer screening have shown promising results for early and more accurate detection. AI-assisted imaging assists early detection by allowing for faster and more reliable detection of abnormalities in the lung [3]. AI-assisted imaging increases the efficiency of the detection process, facilitating radiologists' work [3]. Currently, common screening methods such as Chest X-rays (CXR) and Lowdose CT (LDCT) lead to high false-positive rates, leading to over-diagnosis and overtreatment [2]. Nodule detection remains a challenge for radiologists; it is often hard to distinguish between benign and malignant tumors [3]. AI tools, however, have been found to reduce false-positive results by improving nodule detection, making it easier to detect if a nodule is benign or malignant [2]. As a result, it is less likely for patients to receive unnecessary treatments and have a higher chance of survival. This is important for elderly, who are more fragile and vulnerable [4]. The elderly usually experience more complications from treatments and have worse outcomes, emphasizing the importance of accurate detection [4].

In addition to improved nodule detection, AI improves detection and reduces errors in CXR, which is a common way to detect lung cancer [1]. Furthermore, studies have shown that AI-assisted models also improve accuracy in positron emission tomography (PET scans), a reliable tool for assessing lung cancer. With the help of AI models, the accuracy of PET scans increases, even when using ultra-low radiation doses [1].

To conclude, radiologists utilizing AI tools can detect

more efficiently and effectively. This cooperative method blends the clinical expertise and experience of human doctors with the speed and efficiency of machines. As a result, there are fewer missed tumors, fewer false alarms that result in needless invasive procedures, and an earlier detection of troubling changes.

3. Precision Medicine/Treatment Personalization

Artificial intelligence is transforming cancer care by replacing the outdated one-size-fits-all approach with precision medicine, which refers to tailoring medical treatments to each patient's unique genetic profile and disease characteristics [5]. Each patient's cancer is different, with different genetic markers and treatment reactions. Thus, precision medicine leads to better results.

Precision medicine with AI can be applied to both screening and treatment for lung cancer. Current screening mostly targets all elderly and requires everyone to screen regularly. Precision screening, on the other hand, uses AI to determine who needs screening based on their profile, considering risk factors such as age, length of smoking, and genetics all at once [1]. This type of screening allows for more personalized and efficient screening. In addition, precision screening saves valuable time for medical providers, allowing them to allocate their resources and energy to patients who require care and are at risk of getting lung cancer.

Likewise, AI helps make treatment more precise. For patients with aggressive cancers, traditional approaches frequently adopt a uniform strategy, experimenting with standard treatments and adjusting based on response. However, individuals' profiles are not considered in the process, which can lead to problems such as poor response to treatment. By assisting oncologists in predicting which treatments will be most effective for each unique case, AI is revolutionizing this paradigm. AI utilizes sophisticated algorithms to examine enormous volumes of data, including the tumor's genetic profiles, the patient's medical background, and the outcomes of thousands of prior instances that are comparable to the current one [5]. AI can spot subtle patterns that indicate a patient's likelihood of responding to specific immunotherapies, targeted therapies, or chemotherapy medications. This allows patients to access better care while avoiding the psychological and physical effects of ineffective treatments. In addition, it also enables medical providers to be initiative-taking rather than reactive by using AI models to forecast how a patient's cancer may develop or spread. Furthermore, they can connect patients with clinical trials for new treatments that target the unique features of their cancer, providing ISSN 2959-409X

access to innovative therapies that might otherwise go unnoticed.

4. AI-assisted Surgery

Another innovation is using AI for lung cancer surgery. In fact, research has shown that AI aids precision radiotherapy by helping doctors improve surgery planning [4]. A study found that AI aids precision radiotherapy in many ways. For example, Virtual Reality (VR) allows surgeons to practice before the surgery by interacting with 3D models and simulating resection [4]. Avoiding damaging to healthy tissues and unnecessary resections when the surgery takes place, thereby improving patients' outcomes [5]. During the surgery, surgeons can now use Robotic-Assisted Thoracic Surgery (RATS) to enhance the process. RATS is a surgical method relying on da Vinci Surgical System, which consists of a robotic-assisted surgical platform, a surgeon's console, a patient-side cart with robotic arms, and a vision cart. When surgeons manipulate the console, their movements are translated to the patient's body [6]. This method provides 3D visualization of the patient's body, making surgeries more precise and accurate. In addition, RATS often come with high-definition optical systems and stable camera platforms, enabling surgeons to have a better view of the surgical site [6]. To evaluate the effectiveness of RATS, researchers compared RATS to Video-assisted thoracoscopic surgery (VATS) and traditional open-chest surgery (Thoracotomy). Results suggest that the patients who undergo RATS have less hospital stay: 2.17 days shorter than open surgery and similar results to VATS [6]. RATS also has a shorter learning curve than VATS [6], which is beneficial as surgeons will reach proficiency in a shorter amount of time. Although there is a learning curve, once surgeons become familiar with RATS, they can efficiently utilize AI tools for planning and conducting the surgery, learning to better quality care for patients.

5. Healthcare Efficiency

In addition to bettering medical outcomes, AI is contributing to more sustainable lung cancer care for healthcare systems. From imaging to pathology to expert consultations, the conventional diagnostic process takes a lot of time and money. Any kind of delay can make the difference between fighting metastatic disease and treating an early-stage tumor.

AI increases the efficiency of lung cancer care in several ways. First, AI, in particular, machine learning (ML) and deep learning (DL) creates opportunities for prediction for diagnosis, prognosis, and treatment outcomes; ML and DL algorithms can be trained to predict genetic mutations,

treatment response, and patient survival [5]. This predictive nature can assist medical providers when providing care for patients, increasing productivity of their workflow by providing valuable medical information. Moreover, AI can rank urgent cases, guaranteeing that scans indicating cancers receive prompt attention. Clinicians can now concentrate on intricate decision-making instead of tedious image analysis since it eliminates repetitive manual tasks. Additionally, by standardizing assessments, the technology reduces variation amongst readers and institutions. Most significantly, AI helps prevent the high expenses of late-stage cancer care by detecting cancers early and quickly matching patients with the best treatments. Early intervention usually results in less aggressive treatment, shorter hospital stays, and better long-term outcomes [7], all of which improve patient quality of life and save a substantial amount of money for healthcare systems.

6. Discussion

Even though AI has amazing potential for treating lung cancer, there are challenges in putting it into practice. The "black box" problem is a major obstacle [5]; many AI models reach conclusions without providing an explanation, which makes it challenging for physicians to completely trust or understand their results. For example, doctors might be reluctant to act if an AI flags a scan as cancerous but is unable to identify the cause. To close this gap, researchers are developing "explainable AI," but transparency is still a work in progress.

Data privacy is yet another important issue. TIn order to learn and develop, AI systems need enormous volumes of patient data [5], which raises concerns about who can access private medical records and how they are safeguarded. Genetic profiles, which are especially susceptible, could be compromised in addition to private health information. Many patients might have a lack of trust for technology innovations, thereby refusing to provide their data for machine learning. Without sufficient data, it is impossible for AI to produce reliable and generalizable results, making it an undependable tool [5]. Hospitals need to strike a balance between innovation, strong cybersecurity, and transparent patient consent procedures.

Algorithmic bias is another possibility. An AI's accuracy may suffer for women, younger patients, or members of ethnic minorities if it is trained primarily on data from specific demographic groups (such as older white males). This might make already-existing healthcare disparities worse. For instance, a 2022 study discovered that certain algorithms for screening for lung cancer were less accurate for Black patients due to their underrepresentation in training data. To guarantee equitable care, dataset diversification and ongoing audits of AI performance across

populations are crucial. Finally, it is important to remember the human factor. An over-reliance on AI may result in complacency or impair clinicians' diagnostic abilities.

Currently, AI continues to be expensive. Even though RATS show promising results, the costs are significantly higher than having open surgery or VATS. The estimated cost for a new da Vinci robot is around \$2 million [7]. Robots also require annual maintenance costs that are about 10% of the initial costs. The high and ongoing costs create a barrier for hospitals to extend using AI tools in lung cancer care. Lowering the costs necessitates competition among technology companies, which requires a significant amount of time and energy. Therefore, unfortunately, RATS cannot currently be widely adopted despite its benefits.

Most importantly, studies have shown that medical providers' roles are central. Despite the advances of AI, it should serve as a tool for assistance, helping humans to make better decisions [4]. For instance, AI such as RATS rely on surgeons' expertise. Without surgeons' control, valuable visual information and data cannot be effectively used. Collaboration, in which doctors offer context, empathy, and final judgement while AI manages pattern recognition and data processing results in the best patient outcomes. After all, a machine cannot understand subtleties outside of its programming or reassure a terrified patient.

7. Conclusion

AI's incorporation into the treatment of lung cancer signifies a paradigm change in oncology by providing answers to problems that have long beset traditional methods. In addition to increasing diagnostic precision, these smart technologies are opening the door to a new era of predictive medicine, in which algorithms can predict treatment outcomes, predict tumor behavior, and even detect highrisk patients before symptoms appear. Clinicians can gain previously unheard-of insights into each patient's illness due to the technology's capacity to synthesize complicated datasets, such as genomic profiles and radiomics. This goes far beyond just identifying patterns; artificial intelligence systems can now identify intricate biological connections that influence everything from treatment selection to surgical planning. Furthermore, as these technologies advance, they are democratizing high-quality cancer care by enabling expert-level analysis to be accessible even in environments with low resources via cloudbased platforms and mobile applications.

However, the medical community must work together to meet the significant responsibilities that come with this technological transformation. Transparent algorithms and strict oversight are necessary due to the ethical ramifications of AI decision-making in life-or-death situations. Standardized procedures controlling the training, validation, and updating of these systems are desperately needed to avoid biases and guarantee fair treatment for a variety of groups. The ultimate test of AI's effectiveness now will not be its technological prowess but rather its observable effects on patient outcomes, such as increased longevity, better quality of life, and easier access to care. The way forward necessitates upholding this human-centered approach while sensibly utilizing AI's revolutionary potential to guarantee that these developments assist every patient equally without jeopardizing the doctor-patient relationship, which is still at the core of successful and effective cancer care.

References

[1] Espinoza, J. L., & Dong, L. T. (2020). Artificial Intelligence Tools for Refining Lung Cancer Screening. Journal of clinical medicine, 9(12), 3860. https://doi.org/10.3390/jcm9123860

[2] Zhong, R., Gao, T., Li, J., Li, Z., Tian, X., Zhang, C., Lin, X., Wang, Y., Gao, L., & Hu, K. (2024). The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis. Frontiers in oncology, 14, 1346010. https://doi.org/10.3389/fonc.2024.1346010

[3] Li, B., Jiang, L., Lin, D., & Dong, J. (2022). Registered Clinical Trials for Artificial Intelligence in Lung Disease: A Scoping Review on ClinicalTrials.gov. Diagnostics (Basel, Switzerland), 12(12), 3046. https://doi.org/10.3390/diagnostics12123046

[4] Bassi, M., Vaz Sousa, R., Zacchini, B., Centofanti, A., Ferrante, F., Poggi, C., Carillo, C., Pecoraro, Y., Amore, D., Diso, D., Anile, M., De Giacomo, T., Venuta, F., & Vannucci, J. (2024). Lung Cancer Surgery in Octogenarians: Implications and Advantages of Artificial Intelligence in the Preoperative Assessment. Healthcare (Basel, Switzerland), 12(7), 803. https://doi.org/10.3390/healthcare12070803

[5] Tunali, I., Gillies, R. J., & Schabath, M. B. (2021). Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. Cold Spring Harbor perspectives in medicine, 11(8), a039537. https://doi.org/10.1101/cshperspect. a039537

[6] Mattioni, G., Palleschi, A., Mendogni, P., & Tosi, D. (2023). Approaches and outcomes of Robotic-Assisted Thoracic Surgery (RATS) for lung cancer: a narrative review. Journal of robotic surgery, 17(3), 797–809. https://doi.org/10.1007/s11701-022-01512-8

[7] Novellis, P., Alloisio, M., Vanni, E., Bottoni, E., Cariboni, U., & Veronesi, G. (2017). Robotic lung cancer surgery: review of experience and costs. Journal of visualized surgery, 3, 39. https://doi.org/10.21037/jovs.2017.03.05