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A Review of Consumer-Grade Wrist-Worn
Wearables for AI-Based Health Monitoring
and Early Warning

Abstract:

Mingbo Wangl’* Consumer-grade wrist-worn wearables have recently
arisen as a promising tool for daily life health detection;

RO B Sbeal, B, however, their accuracy and bias remain under debate. In

China this review, the author discussed the latest development of
Cormesponding sulion consumer-grade wrist-worn wearables in detecting OSA
11227530921 @outlook.com (obstructive sleep apnea) and AF (atrial fibrillation), by

using PPG (Photoplethysmography), SpO, (oxyhemoglobin
saturation), and IMU (inertial measurement units). Based
on these two illnesses, the author evaluates how skin color
may influence the OSA and AF detection. The author
pointed out the findings for OSA and AF detection in
different sensors and approaches. For example, in OSA,
the author analyzes the method of detecting changes in
SpO, and changes in posture by using the IMU. In AF
detection, the author analyzes the two-step approach of AF
capturing, analyzes the statistical data for On-demand ECG
confirmation, and studies experiments from Apple Inc. and
Huawei Inc. Based on that, the author shows three future
perspectives, such as improvements that could be made in
the device and users, and the supervision department, then
summarizes the entire text.

Keywords: Wearables; Artificial Intelligence; Obstruc-
tive Sleep Apnea; Atrial Fibrillation; Skin-tone bias.

1. Introduction a large amount of data in real-life situations, thereby

increasing the probability of detecting intermittent
Over the past decade, consumer-grade wearables o1 nocturnal health issues. Traditional diagnostic ap-
such as smartwatc.hes and smart bands tran'sformed proaches, for example, a 12-Lead electrocardiogram
from a step-counting tool to a health detection plat- (ECG), provide only a short-term snapshot of the
form. Compared with traditional medical-grade mon-  gisease within medical institutions, making it hard to

itoring equipment, their key advantages are high ac- capture this momentary event.

cessibility, easy wearability, and the ability to support  gensors in a wrist-wearable system consist of: PPG

long-term daily use: Users can passively accumulate (Photoplethysmography), responsible for pulse mon-



itoring and can further deduce the heart rate, irregularity
of thythm, and SpO, (oxyhemoglobin saturation) trend;
Single-lead ECG (Electrocardiography), responsible for
an on-demand 30-second strip for rapid confirmation of
suspected rhythm events; IMU (Inertial measurement
units) is responsible for posture capturing and subtle car-
dio-respiratory micromotions; Skin temperature and en-
vironmental sensors provide context for sleep and illness
trends.

Across these signals, recent studies are following a sim-
ilar engineering pipeline: Signal detection, cleaning, and
quality control — Key evidence extraction — lightweight
criteria / ML / simple deep models — personalized
thresholds — Alarm to record ECG for confirmation. To
meet privacy and battery constraints, many systems run
inference on the device side --- edge Al --- using model
compression, such as quantization and distillation, to meet
compute and energy costs. Since it delivers noise-resis-
tant, personalized alerts and timely ECG trigger functions
through lightweight device end inference, while also
meeting the requirements of privacy protection and bat-
tery usage limitations.

However, opportunities come with some challenges. Noise
and data quality are typical issues for optical signals, since
optical signals for detection require extremely high accu-
racy. In this case, if signal accuracy is poor, the tolerance
of the algorithm can only be increased, which leads to
false positives or false negatives. For example, movement,
sweat, ambient light, and even sleep position changes can
cause inconclusive readings and false alerts. Also, bias is
very crucial for PPG and pulse oximetry since they de-
pend on optical reflection, which can create a systematic
bias across user groups. Additionally, clinical integration
is immature, so consumer-grade devices are best for daily
monitoring and early warning, and then medical confirma-
tion is required later, rather than being used as a substitute
for medical equipment. Besides that, some new evalu-
ations must be recorded, such as alert latency, incorrect
rate, false alerts per given time, and battery impact.

In addition, previous reviews typically focus on a single
condition (e.g., AF or OSA) or a single modality (e.g.,
PPG or IMU), and they barely consider day-to-day usabil-
ity and diagnostic performance. Against this backdrop,
this review mainly focuses on two representative, wear-
able-friendly applications: (1) OSA screening, empha-
sizing overnight use of PPG/SpO,/IMU, and (2) AF and
arrhythmia screening. A dedicated section then examines
skin-tone effects on PPG and engineering mitigations, as
a cross-cutting constraint for both applications. Together,
these parts connect application performance and bias,
offering a structured view of what consumer wrist-worn
wearables can and cannot do, for everyday screening and
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early warning.

2. Current Evidence on OSA, AF, and
PPG Bias

2.1 Obstructive sleep apnea (OSA)

Wearable sensors, including PPG for SpO,, IMU for po-
sition detection, and even ECG combined with Al algo-
rithms, those sensors were able to capture the occurrence
of OSA. By distinguishing alternative indicators such as a
reduction in SpO, or sudden pauses in chest motion, those
wearable sensors could simulate PSG (Polysomnography)
[1], [2]. Recent studies applied machine learning and deep
learning to those indicators, allowing large-scale automat-
ed OSA screening during the night. In this section, this
review is going to evaluate the representative studies that
meet the criteria, mainly focusing on Al models, datasets,
results, key findings, and limitations.

2.1.1 Method Based on PPG and SpO2

First, a representative approach is to utilize the PPG on a
smartwatch or smart band to estimate AHI (Apnea—Hypo-
pnea Index) or to detect OSA events. For instance, Papini
et al. recorded 250 wrist PPG records, then trained a Deep
Learning model to predict AHI[1]. Compared with PSG,
their algorithm has good consistency, with an AHI estima-
tion that has a relative index of 0.61, 3£10 events per hour
on average[1]. Importantly, this algorithm can classify
severity with medium correctness (Cohen’s k=~ 0.51) and
shows high performance in screening. (In mild, moderate,
and severe OSA, has approximately 0.84-0.86 ROC AUC)
[1].

Other studies were focused on utilizing the SpO, derived
from PPG in smartwatches (Galaxy Watch 4 and Apple
Watch 7). Kim et al. compared PSG with a pulse oximeter
built into consumer-grade smartwatches in 133 patients[2].
They found that SpO, based on PPG was able to indicate
OSA[2]. For detecting any OSA (AHI > 5) using the
Galaxy Watch, its sensitivity and specificity were about
82.9% and 75.8%, respectively (AUC = 0.81)[2]. Using
the lowest SpO, could improve the AUC = 0.85[2]. Apple
Watch performs worse than the Galaxy Watch. By using
the lowest SpO,, sensitivity and specificity were 71.0%
and 63.0%, respectively[2]. It is important to know that
both tend to miss some severe events; In this study, the
higher the OSA severity, the lower the diagnostic accura-
cy. For instance, diagnostic accuracy in mild OSA events
has 70% accuracy, but in severe OSA events, it only has
63% diagnostic accuracy. This shows that although the
algorithms were able to “flag” OSA via blood-oxygen
patterns, sensor differences, and extreme OSA events may
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affect the trustworthiness in very severe cases.

More advanced PPG analysis enhances the performance.
Wu et al. proposed using information-based similarity
indices from wearable PPG pulse-rate data[3]. According
to 92 bracelet records, their algorithm combines static
and dynamic pattern matrices, achieving 84.7% accuracy,
76.7% sensitivity, and 89.6% specificity in OSA classifi-
cation[3]. Those results indicate that ML can extract sub-
tle cardiopulmonary features, therefore detect OSA with a
specificity of approximately 90%.

2.1.2 Method Based on IMU
Another approach is to capture the pulse of breath by

using motion sensors. Modern smartwatches have triax-
ial accelerometers and gyroscopes, which are sensitive

enough to distinguish motion in the chest and wrist caused
by the pulse of breath[4]. Hayano et al. show an IMU to
quantify apneic episodes[4]. In their study of 122 adults
taking PSG, they developed an algorithm to filter acceler-
ometer/gyro signals between 0.13 to 0.7 Hz “breathing”
band, and sense drops in signal amplitude which can
last 10 to 90 seconds (assumed apneas)[4]. As shown in
Fig. 1, the frequency of these detected signals is strong-
ly correlated with the PSG AHI (r=0.84 in the test set).
For severe OSA events (AHI > 30), the sensitivity and
specificity are 90% and 88% respectively, as shown in
Table 1. Given that only movement was measured, these
performance levels are comparable to Type I1I home sleep
tests[4].
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Fig. 1 Correlation between wearable-derived REI and PSG AHI. Adapted from Hayano
et al.[4]. These strong correlations demonstrate that wrist-worn IMU sensors can reliably
approximate clinical sleep study results.

Table 1. Confusion table for identification of severe SA (AHITST > 30) by RES in the test group. “cutoff value of
20 was predetermined in the training group. Adapted from Hayano et al., 2024[4].

AHl; < 30 AHI¢;> 30
RES <20° 37 2 NPA =95%
RES >20° 5 17 PPA =77%
Specificity = 88% Sensitivity = 90% Accuracy = 89%

This potential is not only in experiments, but also in the
development of the technology industries. Apple Inc. in
2024 announced a Sleep Apnea Notification feature on
Apple Watch, by using the accelerometer to trace the
“Breathing Disturbances” during the night[5]. The al-
gorithm is trained in a large multi-set dataset with PSG
simultaneously. As shown in Table 2, in validation, the
alert recognizes approximately 89% of severe OSA cas-
es (sensitivity = 89.1% for AHI > 30), and maintains
98.5% specificity for individuals who have no significant
apnea[5]. However, for moderate OSA at this high speci-
ficity, the sensitivity is 43.4%, which is relatively low[5].
This shows that the algorithm on wearables must find a

balance between high sensitivity (capture most cases) and
high specificity (minimize false positives), depending on
the usage[5]. Apple tends towards the latter, reflecting
the prudent attitude towards consumer-oriented notifica-
tions[5].

Overall, these studies show that wrist-worn wearables
can detect moderate and severe OSA with high accuracy.
Many studies have 0.80-0.95 AUC in distinguishing OSA
and healthy sleepers[1], [4]. At the clinical threshold of
AHI > 15 (moderate OSA), reported sensitivity has a
range from 75% to over 90%, and specificity has a range
from 70% to 90%, depending on different algorithms and
sensors[2], [3].



A systematic review and meta-analysis in 2024 of 38 stud-
ies agreed that “wearable Al shows potential” for OSA
identification. Overall sensitivity is about 93.8%, but the
overall specificity is poor, about 75.2%[6]. In fact, this
means that in the current stage, wearable algorithms tend
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to “over-mark” OSA; while capturing most of the real cas-
es, some false positives are sacrificed[6]. Therefore, many
authors recommend using wearable detections as an early
warning rather than an independent diagnostic tool[6].

Table 2. Primary Endpoints: Sensitivity and Specificity. Reproduced from Apple Inc. [5].

Algorithm Result Value Two-Sided 95% Confidence Interval
Sensitivity for moderate category 89/205 (43.4%) (36.5%, 50.5%)

Sensitivity for severe category 164/184 (89.1%) (83.7%, 93.2%)

Weighted overall sensitivity 66.3% (62.2%, 70.3%)

Specificity for normal category 543/543 (100.0%) (99.3%, 100.0%)

Specificity for mild category 315/346 (91.0%) (87.5%, 93.8%)

Weighted overall specificity 98.5% (98.0%, 99.0%)

Note: Weighted average sensitivity = (1/2)(moderate sen-
sitivity) + (1/2)(severe sensitivity)

Weighted average specificity = (5/6)(normal specificity) +
(1/6)(mild specificity)

2.1.3 Limitations

Although the result shows great potential, wearables are
now facing many challenges. Data quality and noise are
the main problems. For example, motion artifacts, poor
sensor contact, or even low perfusion can degrade PPG /
SpO, accuracy, leading to missing and false positives[2],
[4]. In some cases, the wearables show bad performance,
such as a change in sleep posture or potential cardiovascu-
lar diseases, etc., which could break the dependence of the
original algorithm, such as heart rate and SpO,[4]
Additionally, battery and computing power limit the algo-
rithm in complexity. Some simple algorithms could omit
details, but sophisticated algorithms must be highly opti-
mized for running on the device side[1].

Finally, personalization is also a challenge since the fixed
threshold does not apply to everyone. Some researchers
advise using a self-learning strategy to adjust the algo-
rithm to reduce individual differences|1]. Besides that, the
supervision department is still conducting tests on various
devices to ensure compliance with the equipment[2].

2.2 Atrial fibrillation (AF)

2.2.1 Two-Step Detection Approach in Wrist-worn De-
vices

Typically, modern smartwatches and bands use a two-
step strategy to detect AF. First, the PPG sensors passively
monitor the pulse for irregularities that could indicate the
occurrence of AF. Once the algorithm detects a continuous
arrhythmia, it alerts to inform the user. Second, the ECG
confirmation is required to determine the AF. This method

makes use of the convenience and wide time coverage of
PPG, and the accuracy and high specificity of ECG[7].
By using PPG, only the suspected AF user may require an
ECG confirmation, which leads to low false-positive and
unnecessary results in healthy people.

2.2.2 PPG Screening for Irregular Pulse

By analyzing pulse interval data, PPG-based AF screening
may detect irregular heart rhythm patterns. For example,
in the Apple Heart Study, the irregular pulse tachograms
were checked by the PPG algorithm of the watch, and
if multiple irregular pulse was detected, the alarm was
triggered[7]. Similarly, A large-scale study conducted
by Fitbit uses an algorithm, which requires a continu-
ous 30-minute irregular pulse under a resting situation
to trigger the alarm[8]. Those strict standards ensure the
temporary artifact and occasional premature contraction.
In the real-world data show that the alarm rate was low,
only 0.5-1% of users per observation period, which is
reassuring in avoiding over-notification to healthy users,
therefore indicating that PPG screening is reasonably se-
lective[7], [8].

2.2.3 On-Demand Single-Lead ECG confirmation

While the device detects a possible AF, the user can ini-
tiate an ECG record, such as putting a finger on the elec-
trode, and then the wearable’s analysis follows up with
a 30-second ECG to determine if AF occurs or not. This
step is crucial for diagnostic accuracy since ECG is more
accurate than PPG. Studies have found that ECG records
have very high sensitivity and specificity to distinguish
AF, normally in the range of 90-95%, compared with
12-Lead ECG[9]. But a big challenge is the inconclu-
sive ECG result, which the algorithm cannot classify. A
study of multiple devices found that about 15-20% first-
time ECG record was marked as “inconclusive”[9]. For
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example, Apple Watch 6 has about 18% results that were
“inconclusive”, Fitbit Sense has about 21% results that
were “inconclusive”[9]. In most cases, those inconclusive
tracings could be interpreted by doctors, which indicates
that the major reasons were noise, artifacts, and algorithm
constraints. Usually, doing another ECG immediately
could fix the problem[9]. Therefore, improvements in the
algorithm and software are needed for reducing inconclu-
sive rates, without sacrificing sensitivity[9]. It is worth
noting that the built-in ECG allows the user to capture the
heart rhythm immediately after an alert, which is a major
advantage compared with the old confirmatory method,
which had a longer delay in capturing the rhythm.

2.2.4 Recent Studies

From 2019 to 2025, multiple studies in real-world settings
will evaluate this two-step approach.

2.2.4 .1 Apple Heart Study

This study (N = 419,000) showed the safety and value of
the Apple Watch. Only 0.52% of candidates received the
AF notifications, which shows a low probability of false
positives[7]. Significantly, the PPV (positive predictive
value) for the AF alert is 84%, which implies that most of

the alerts were true[7]. The method they used for confir-
mation is to deliver some ECG patches to users. However,
the confirmation of the AF has a delay from days to two
weeks. During the delay, some short AF have already
disappeared. This explained that only one-third of the AF
was recaptured and highlighted the importance of instant
confirmation[7].

2.2.4 .2 Huawei Heart Study

Large-scale AF screening research (N > 200,000) was
conducted by using PPG in Huawei wearables and then
confirmed in medical agents[10]. The result indicates that
the PPV for the AF is 92%][10]. This is due to frequent
sampling, which records once every ten minutes. But due
to a lack of a built-in ECG, the delay also exists[10].

As summarized in Table 3, these studies indicate that a
two-step approach can achieve high PPV, normally higher
than 80%, even higher than 90%, which is an important
index of acceptance[7], [8], [10]. Other than that, the in-
conclusive rate is also an important index, which depends
on the environment and devices[9]. In the latest devices
and algorithms, the inconclusive rate is less than 10%, but
some independent test reports have reported a 15% incon-
clusive rate[9].

Table 3. Key Performance Metrics from Representative Studies (2020-2025)

Study (Year) Device(s) Population

Inconclusive ECG | Confirmation La-

PPV of PPG Alert
Rate

tency

Apple Watch
Apple Heart Study (2019) ppie T

419,000 app us-

84% for irregular |n/a (no on-watch|~14 days (ECG

Seri 1-3, .
[7] ;Pér;reﬂ;) ers pulse alert ECG in study) patch sent)
H i Watch | 187,000 tel /a (ECG not built- | D linic visit/
Huawei Heart Study (2020) [10] | oovet Wate 000 telecom | oo, for PPG alert |2 (ECG not built- Days (clinic visi
(PPG) users in) Holter)

Notes: PPV = positive predictive value; PPG = pho-
toplethysmography, ECG = electrocardiogram.

2.3 Skin-Tone and PPG Bias
2.3.1 Mechanism

PPG in wearables uses a light-emitting diode to illuminate
the skin, and a photodetector to receive the reflected light;
hence, this system could capture the volume change due
to a pulse. Other than hemoglobin, melanin in skin also
receives or scatters the visible light, causing a change
in light intensity; this effect is even more obvious for
green/red light[11]. This light mechanism indicates that
dark-complexioned users are more likely to experience
low-perfusion like PPG and low amplitude, therefore
increasing the sensitivity to noise and artifact in the algo-
rithm[11].

2.3.2 Evidence

Research on medical-grade PPG first proposed the sys-
tematic bias in skin color. Dark-skinned inpatients have
3 times higher Occult hypoxemia (SpO, > 92% and ar-
terial blood SaO, < 88%) amounts compared with light-
skinned inpatients, indicating that the results of the
optical approach in dark-complexioned patients will be
overestimated[12]. This bias could similarly influence the
wearables based on PPG / SpO, such as OSA screening
and AF screening based on an irregular time interval. In
dark-complexioned people, a low PPG range and higher
noise are easier to trigger “inconclusive”, or lower the
probability of reaching the algorithm threshold, showing
an increase in false positives, and fewer true readings[12].

2.3.3 Influences on OSA and AF

For OSA screening, which is based on SpO, fluctuation



and desaturation events, the influence could result in an
underestimation of the disease. For example, if a true
desaturation of 4% misinterpreted as 2%, then the respira-
tory event count could be systematically underestimated,
and cause a delay for moderate patients[12]. AF screen-
ing, which is based on a two-step approach, has a major
in step one[12]. Small range and susceptible to interfer-
ence, PPG in dark-complexioned users is harder to meet
the condition of valid and continuous irregular readings,
causing the lower sensitivity and higher inconclusive rate;
therefore, instant ECG confirmation is important[12]. In
the study, multi-wavelength, SQI gating, personalized
threshold, and proper wearing can significantly reduce the
color bias. However, in the reporting and validation pro-
cess, it is necessary to have a clear hierarchical structure
to highlight the skin color bias, and during the clinical
interpretation, higher vigilance should be maintained for
different individuals[11], [12].

3. Future Discussion

Consumer-grade wrist-worn wearables already have two
mature approaches for health detection. The first one is
OSA screening, and the other one is two-step PPG screen-
ing. Future improvement and optimization should focus
on the actual usability in the real world rather than some
indication, such as accuracy or inconclusive rate. Below,
the author mentioned several enhancing measures.
Complete the loop from the alarm to the result. Most users
saw the alarm but failed to do ECG confirmation, or too
late to do so. For this situation, the alarm needs to vibrate
and include a notification sound. If the user still does not
respond, it will be sent to the family members’ mobile
phone, or a dedicated person will make a phone call to
remind them. Besides that, educational guidance to users
is also important. For the first time of use, it is crucial to
inform the user that if an alarm occurs, an ECG confirma-
tion must be conducted.

Pigmentation-related Bias. Dark-complexioned users are
more likely to have a low signal range and a higher in-
conclusive rate, causing sensitivity decrease and a delay.
Future improvement could be multi-wavelength and adap-
tive reflective index control in the sensing end; At the data
processing end, perform weighted calculations based on
the objective reflectivity; At the algorithm end, use mul-
tiple algorithms tailored for different skin tones, and the
routing selection is made based on the actual situation of
the user.

The future role of the supervision department is to define
a risk-based framework for consumer-grade wrist-worn
wearables. This could require:

a. A minimum reporting set which includes the inconclu-
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sive rate, false alerts per day, alert-to-ECG latency, and
battery usage.

b. To conduct a mandatory 12-lead ECG experiment for
key research

c. Considering the different skin tones of users, and adapt-
ing and adjusting the algorithm accordingly based on the
skin color

4. Conclusion

In this review, by conducting a systematic summary and
analysis, the author draws the following conclusions.

(1) Wrist-worn sensors such as reflective PPG, SpO,, and
IMU have demonstrated a high effectiveness in detecting
and capturing OSA and AF. Particularly, PPG-based AF
detection achieved high accuracy and a low false positive
rate, while the ECG confirmation is performed promptly.
(2) In several studies, a common engineering pipeline has
already emerged, including signal sampling, quality con-
trol, feature engineering, a lightweight model, an adaptive
algorithm, and a personalized threshold. Nowadays, many
systems make use of model compression technology to
allow models to be inferred at the device end. This could
reduce battery cost and ensure data privacy.

(3) However, there do exist some challenges. Optical sig-
nals are easily interfered with by artifacts, sweat, and low
perfusion. Reliability and diagnostic accuracy of the sig-
nals are influenced by skin colors, so that dark-complex-
ioned users have a smaller range of signals and a higher
inconclusive rate.

Despite these findings, this review is limited by the diver-
sity of datasets, limited multi-modal sensor integration,
and uneven representation of skin tone groups. Future
research may benefit from a larger dataset, more diverse
study populations, and higher-quality data. This review in-
tegrates the existing detection and screening methods for
OSA and AF and summarizes and explains the problems
faced by wearables in real life. Hopefully, this review will
provide a useful reference for future OSA and AF detec-
tion for consumer-grade wrist-worn wearables.
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