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Abstract:

The development of rehabilitation robots has shown
significant potential in improving patient recovery through
intelligent interaction mechanisms. The passage introduces
two telerehabilitation methods called Vision-based Pose
Estimation and Vision-based Environmental Perception.
The first method is to apply a non-invasive solution in
order to treat upper limbs by wearing a hand exoskeleton
with human robot interaction. With a set of master-slave
setup, the RGB-D camera captures an image of what
operators perform and delivers it to the wearable hand
exoskeleton remotely by a bidirectional combination link,
while an external sensor records the forces. It is convenient
to estimate data and find a better solution. The second
method is about an exoskeleton robot that is equipped with
the ability of environmental perception. It is surrounded by
visional sensors, a control system and critical technologies.
Vision-based Pose Estimation (VPE) and Vision-based
Environmental Perception (VEP) are testified to be
promising in the prospective telerehabilitation robot. This
paper aims to provide a new perspective on human-robot
interaction in the field of neurorehabilitation.

Keywords: Telerehabilitation, Master-slave setup,
RGB-D camera, Hand exoskeleton.

1. Introduction

the help of a rehabilitation robot. The application of
rehabilitation robots decreases the amount of work of

In recent years, the number of patients being rehabil-
itation with a rehabilitation robot after suffering from
various kinds of diseases like stroke and cerebral pal-
sy is increasing gradually. As we all know, if people
suffer a stroke, the functions of physiology will drop
dramatically. The ability to react and balance is likely
to fall. At the same time, the muscle spasticity will
take place [1]. The experts in the field of robotics are
fond of conducting research to solve problems with

doctors and nurses, obtaining recognition and a good
reputation, which is proven in clinical practice [2]. In
the process of rehabilitation, the interaction between
patients and robots is much more important. It is an
interaction system that involves a series of relative
subjects including computer science, biomechanics,
neuroscience and so on based on safety, functional-
ity and effectiveness [3]. Hence, the objective of the
study is to introduce two kinds of interaction meth-
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ods in order to assist patients, especially old people, to
rehabilitate effectively rehabilitating.

Focusing on the rehabilitation of the upper limb, it is
impossible for therapists in the hospital to take care of
patients at home. Therefore, telerehabilitation plays an
important role in the process of treatment, which reduces
cost and time and combines patients with a robot in the
interaction system. The telerehabilitation interaction sys-
tem is equipped with capabilities of controlling hands and
arms, evaluation and real-time subjective monitoring in
the convenience of recording data of all terms, like exert-
ing forces on the joints. After that, operators can analysis
the results transmitted by the intelligent robot to come up
with more excellent schemes [4]. Noticeably, it provides
repetitive and beneficial tasks for users to do rehabilitation
training in their daily lives [5].

What is introduced in the investigation are two methods
called Vision-based Pose Estimation (VPE) and Vi-
sion-based Environmental Perception (VEP) that are pas-
sive rehabilitation methods. In the first part, there is a set
of devices to complete the overall rehabilitation work in
the form of a master-slave setup. The master-slave setup is
composed of a wearable hand exoskeleton for duplicating
actions and an RGB-D (Red, green, blue and depth) cam-
era associated with assessing the 3D position of the oper-
ator’s hand joints and allowing them to control remotely.
What’s more, how to connect the master and slave unit
and how patients practice correctly are displayed. In the
second part, the VEP method is based on the relationship
between users, environment and exoskeleton. It is compli-
cated to describe the interaction between the human-robot
and the environment, because there are enormous algo-
rithms and electrical signal interactions behind it. Howev-
er, some compositions and restricted factors are illustrated
in this passage. The significance of incorporating vision
lies in prediction about the upcoming environment and
estimation about gait planning.

2. Vision-based Pose Estimation

2.1 Composition of VPE

The VPE system includes a type of master-slave setup.
The master unit is an RGB-D camera utilized to record,
deliver and cope with hand orders information from op-
erators. The slave unit, which is a hand exoskeleton, will
receive real-time order information and drive patients to
perform the same action as operators. Meanwhile, the
sensorized object will take notes about the magnitude of
forces held by patients and send feedback to operators by
the master unit[6]. The RGB-D camera is Figure 1, the
wearable hand exoskeleton is Figure 2.

Fig. 1 RGB-D camera [7]

Fig. 2 wearable hand exoskeleton [8]
2.1.1 The Master Unit

The master unit will apply random forest (RF) to estimate
the hand movement of operators.RF is able to calculate all
probabilities of all joint movements. The RGB-D camera
is hung 50cm above the table to avoid self-occlusions of
the operator’s fingers. The RF classifier achieved by a
laptop reads depth input stream from the camera at the
rate of 30fps, which is the highest working frequency of
the RGB-D camera. Only does the RF classifier cope with
a hand’s pixel, but the pixel of a plane like a desk can not
be segmented by it. The pixel of the desk is deleted by the
RANSAC algorithm. Once the pixel information of the
hand is segmented, the RF classifier deals with it easily.
This way is beneficial for daily training. Five of all joints
will be retained to calculate the sequence main sequence
orders, these parts are metacarpo-phalangeal (MCP),
proximal and distal-interphalangeal (PIP and DIP) joints
[6]. The model and images used for training the RF classi-
fier are Figure 3.
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Fig. 3 Images of RGB-D camera [6]

2.1.2 The Slave Unit

The slave unit is used to capture sensorized objects by
hand exoskeleton and send information on forces to the
master unit accurately. It is a type of mechatronic device
that consists of a wearable hand exoskeleton, a remote ac-
tuation block driven by a cable-sheath system and a power
unit. There are four degrees of motion (DOF): MCP, P-DIP,
MC-IP and carpo-metacarpal (CMC). For the index fin-
ger, it is actuated by MCP, PIP and DIP. For the thumb,
it is actuated under flexion/extension(f/e) of MCP, DIP
and CMC. The overall process of exoskeleton motion is
driven by a direct current motor through a bidirectional
cable-sheath transmission[6].

The working theory of an external sensorized grasping ob-
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Thumb align

1
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ject is related to an electric circuit. It is a rectangular resin
block, the widest surface is covered by two pressure-sen-
sitive pads based on photoelectric sensing technology
for measuring the forces of human-robot interaction. In
addition, by squeezing two silicone block-shaped hol-
low structures, patients can grasp the sensorized object.
There is an LED emitter and a light receiver on the circuit
board. When a silicone block-shaped hollow structure is
squeezed, deformation will obstruct the light collected by
the receiver and illustrate the ratio of voltage drop in each
receiver of the corresponding LED emitter [6]. The previ-
ous report about the sensor properties figures out that the
force of human-robot interaction is 0.16 N [9]. The pinch
grasp and lateral grasp practice are Figure 4.

Opposition-
Thumb align

Fig. 4 Pinch grasp and lateral grasp practice [10]

In this paper, researchers Farulla and so on divided the
practice process into two gestures: pinch grasp and lateral
grasp. The VPE algorithm works by evaluating which
joints the hand is interested and calculating the finishing
percentage of practice. For pinch grasp, this percentage is
linked to the standard distance between the index fingertip
and thumb fingertip. For lateral grasp, this percentage is

linked to the distance between the thumb fingertip and the
plane normal along the MCP, PIP, DIP joints and index
fingertip. It is because the velocity of calculation is fast [6].
The images of calculation about the finishing percentage
of practice are Figure 5.
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Fig. 5 Images of calculation about finishing percentage of practice [6]

2.2 Communication between Master Unit and
Slave Unit

What connects the master unit with the slave unit is a kind
of bidirectional communication link working at the rate
of 30 fps, which ensures consistency with the master unit.
The master unit is used to encode tasks of expected mo-
tion data that is sent to the slave unit within a single byte.
On the contrary, the slave unit can transfer the kinematic
and dynamic states and forces of the sensorized object to
the master unit. All of the operations are real-time (RT)
actions [6].

3. Vision-based Environmental Percep-
tion

3.1 Selection and Installation of Visual Sensors

There are a variety of types of visual sensors. Selecting a
visual sensor, researchers have to take size, weight, power
consumption, performance, detection range, accuracy, vi-
sual angle, stability and compatibility into consideration.
Every brand has its own unique visual identity on the mar-
ket. At the same time, it is vital for researchers to figure
out which part of the body the visual sensor is supposed
to be installed exactly [7]. The requests for visual sensors
are as follows. First, it is as small and light as possible
within low power consumption in order to decrease the
load of operation. Secondly, the application scenarios of it
are able to adapt to different lighting conditions. Thirdly,
in the aspect of software, the Application Programming
Interface (API) offered by visual sensors must be consis-
tent with mainstream edge computing platforms and pro-
gramming languages. Fourthly, cost is a factor that can not

be ignored. After all, nobody wants to buy an expensive
product to treat the lower limb [11].

3.1.1 Classification of Visual Sensors

The visual sensors are divided into two kinds: passive
sensors and active sensors according to whether they can
emit an energy source into the environment [12].

The typical passive sensor is an RGB camera.RGB cam-
era has been prevalent in people’s daily life because of
its advantages of low cost and small size. Nevertheless,
RGB fails to absorb sufficient depth information from the
environment. The working theory of an RGB camera is
triangular measurement, meaning that it takes a photo of
an object from three different views and calculates depth
through disparity in different photos. The process is influ-
enced by lighting conditions. That is why an RGB camera
is constrained to capture depth information [13].

The principle of an active sensor indicates that the sensor
emits a signal to the environment and reacts to the reflect-
ed signal to measure distance. The common active sensor
in daily life is Time-of-Flight (TOF). Even if TOF has the
features of wide range measurement, it can not go through
without consuming excessive power all the time. A TOF
camera obtains the right distance by measuring the time of
light being emitted and reflected by Light Detection and
Ranging (LiDAR). LiDAR exploits a rotating photoelec-
tric diode to acquire a whole view of the environment [14].
With the development of the Internet and technology and
deep investigation, scientists combine an active sensor
with an RGB camera to create an RGB-D camera.RGB-D
camera is equipped with the capacity to attain useful depth
information of streets and roads under Micro-Electric-Me-
chanical System (MEMS) [15]. Some common visual
sensors are as follows. The depth camera is Figure 6. The
LiDAR camera is Figure 7. The stereo camera is Figure 8.
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Fig. 6 Depth camera [16]
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Fig. 7 LIDAR camera [17]
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Fig. 8 Stereo camera [18]

3.1.2 Location of Visual Sensors

The accuracy and range of measurement depend on the
location of the visual sensor. Sometimes, it is set on the
patient’s head, chest and lower limbs [19]. The advantages
and shortcomings of different positions are as following
Table 1 [7]. It can be seen from Table 1, the best positions
of visual sensor installation are the chest and waist. These
two points allow the horizon to be steady.

Table 1. Advantages and disadvantages of different positions

Installation Loca- . . .
i Advantages Disadvantages Suitable Devices
ion
. . . Heavy weight may lead to discom- | Blind guidance equipment,up-
Head Synchronizes with user’s view yweig . Y . 8 autp P
fort and shaky images per-limb exoskeletons
Chest The images are stable, and the view is | Camera posture is easily affected | Upper-limb exoskeletons, low-
es . . :
synchronized with movement by upper-body movement er-limb exoskeletons
Waist The images are the most stable, and the | Low field of view, limited visual | Lower-limb exoskeletons, low-
ais . . . . :
view is synchronized with movement | range er-limb prosthetics
. High accuracy in detecting specific ter- | Restrictions on users’ lower-body . .
Lower limb . ) Lower-limb prosthetics
rains at close range dress, shaky images
Feet High accuracy in detecting specific ter- | Limited field of view, shaky imag- | Lower-limb prosthetics, smart
ee .
rains at close range es shoes

3.2 Control System

To achieve exact perception in plentiful complicated cir-
cumstances, there is a powerful control system that tackles
information from visual sensors and converts it into orders
of relative motions. The control system is composed of
three layers: high-level controller,mid-level controller and
low-level controller [20].

A high-level controller inside the control system is as-
signed to pick up information from all of the sensors and
encodes it so that the controller anticipates possible move-
ments of the robot. Deep learning is becoming a pretty
trend gradually, and it is integrated into high-level con-
trollers to operate convolutional neural networks (CNN)

effectively [7].

After the tasks of the high-level controller, the mid-level
controller will generate a series of corresponding motion
models. It is likely to be helpful to simulate all possible
motion trails [7]. What’s more, the real-time nature is
what the mid-level controller must equip to transmit rela-
tive signals.

Eventually, the lower-level controller is responsible for
adjusting various parameters, such as velocity, time and
acceleration. Usually, the internal algorithm is Proportion-
al-Integral-Derivative (PID) [7].

The whole operation procedure of the three controllers is
as Fig. 9 [7].
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Fig. 9 Operation procedure of three controllers [7]

3.3 Analysis of Critical Technology

The critical technology lying in environmental percep-
tion of lower-limb exoskeleton contains classification of
environments, related datasets, and gait planning facing a
special environment. Analysis of these sides is beneficial
to learn theories behind the lower-limb exoskeleton. First
of all, the classification of environments has a much great-
er impact on subsequent algorithms to a certain degree.
Some of the research relies on a multi-modal-fusion-based
method. For example, Zhu studied the interaction mech-
anism between a flexible exoskeleton and the natural en-
vironment [21]. Besides, deep learning focuses on related
datasets, which means that deep learning is driven by data
[7]. Thirdly, gait planning facing a special environment
is closer to planning about kinematics of corresponding
joints [7].

4. Discussion

4.1 Similarities and Differences

Regardless of VPE or VEP, there are some similarities and
differences between them.

Both VPE and VEP have the potential to promote progress
in the field of rehabilitation robotics. The most obvious
characteristic is vision-based.VPE and VEP both make
full use of RGB-D cameras and sensors to process com-
plicated information and encode with much more complex

algorithms. In terms of cost, the current materials and
devices for the two methods are expensive for most poor
patients.

However, differences between the two methods are more
significant. VPE focuses on the upper-limb while VEP
underlines the lower-limb. Moreover, VPE counts on a
force sensor, and VEP is determined by a visual sensor.
VPE evaluates postures according to probability from
random forest, VEP estimates motion trails depending on
analysis of related datasets and gait planning facing spe-
cial environments. In addition, VPE uses a master-slave
setup to control the wearable hand exoskeleton remotely,
three controllers of VEP control system are independent.
In application positions, it is appropriate to apply VPE to
rehabilitate at home. VEP is operated on different kinds of
streets and roads.

4.2 Future Outlook

Even though current research about vision interaction is
rare, scientists around the world devote themselves to ex-
ploring something more valuable. Many elements being
developed like deep learning, image disposal and algo-
rithms accelerate the development of vision interaction. It
will become a crucial spot in all fields one day, especially
the treatment of stroke. It is a fact that vision interaction
has a positive impact on human robot interaction and is
more competitive in the robot market in the future.



5. Conclusion

In conclusion, rehabilitation robot has made certain prog-
ress in the field of vision interaction, it still needs more
contributions and algorithm constructions to support its
development. This passage attaches importance to two
scientific rehabilitation methods: VPE and VEP disclose
the status and roles of two systems in human-robot in-
teraction. The passage discusses two methods from two
angles: composition and applications. These two methods
are both based on vision interaction, reflecting that vision
interaction in the field of rehabilitation robotics is likely
to become an effective and practical way. As for restricted
elements, both of them lack relative gait planning data-
sets, optimization of human roles in the loop and suffi-
cient funding. These conditions constrain the development
of vision interaction. In the future, diversified industrials
acquire much profit from such cutting-edge technology. It
is changing a large number of industries potentially, espe-
cially wearable exoskeletons. Hence, there is a lot of work
being conducted in terms of algorithms and mechanical
materials optimization to prove its feasibility. Anyway,
VPE and VEP can be regarded as a practical tool for peo-
ple who are tortured by stroke and cerebral palsy to recov-
er earlier.
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