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Abstract:

Cardiovascular disease (CVD) assessment has long relied
on traditional methods that are often subjective, time-
consuming, and limited in predictive accuracy, creating a
significant gap for more objective and scalable tools. To
address this gap, artificial intelligence (Al) is profoundly
transforming the assessment and management of CVD,
enabling a shift from these conventional approaches to
data-driven, precise, and predictive paradigms. This review
comprehensively summarizes the latest advancements in
Al applications across major CVD diagnostic modalities,
including cardiac imaging (echocardiography and cardiac
computed tomography), physiological signal processing
(electrocardiogram and photoplethysmography from
wearable devices), and multimodal risk prediction. Al
algorithms demonstrate expert-level performance in
automating the quantification of key metrics such as
ejection fraction and coronary calcium, detecting subtle
arrhythmias, and identifying early signs of cardiac
dysfunction. Furthermore, by integrating multimodal
data—such as electronic health records (EHRs) and retinal
images—AI models excel in predicting individual risks
of major adverse cardiovascular events, heart failure (HF)
hospitalization, and mortality, outperforming conventional
risk stratification tools. Despite these significant
developments, challenges related to data quality, model
interpretability, and clinical integration still exist. The
future focus will be on three major directions: introducing
large language models (LLMs) to build a more intelligent
patient management system, developing adaptive analysis
systems with continuous learning capabilities, and
expanding the application of Al in auxiliary diagnosis and
treatment. Through a human-machine collaboration model,
to provide clinical solutions for CVD prevention and
treatment that are both personalized and preventive.
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1. Introduction

CVD remain the leading cause of death and morbidity
worldwide, imposing a heavy burden on the global health-
care system. Accurate and timely assessment of CVD is
crucial for effective intervention and improving patient
prognosis. However, traditional diagnostic methods often
rely on subjective interpretation of imaging examina-
tions, physiological signals, and clinical risk scores. This
is time-consuming and unstable and has limited ability
in predicting individual risks. This inherent subjectivity,
combined with the increasing complexity of patient data,
highlights the urgent need for more objective, efficient,
and precise tools in clinical cardiology.

The rapid development of Al, especially deep learning
(DL), has brought a new era to medical diagnosis. Al
algorithms excel in identifying complex, nonlinear pat-
terns in large-scale, high-dimensional data, a capability
perfectly aligned with the multifaceted characteristics of
cardiovascular medicine. By leveraging data from various
sources, such as EHRs, medical imaging, and wearable
devices, Al brings unprecedented potential for transforma-
tion in the CVD care process—from initial screening and
diagnosis to risk stratification and long-term management.
This review aims to comprehensively summarize the
status of Al in CVD assessment and its transformative
impact. It explores the applications in key areas, including
automatic analysis of cardiac imaging (echocardiography
and computed tomography), interpretation of physiolog-
ical signals (electrocardiogram and photoplethysmogra-
phy), and integration of multimodal data for personalized

risk prediction. Additionally, the article critically exam-
ines ongoing challenges related to clinical implementa-
tion, model interpretability, and data bias, while looking
forward to the future directions that may further integrate
Al into the precision cardiology system, providing support
for clinicians and improving patient care.

2. Applications of Al in the Diagnosis
and Evaluation of CVD

2.1 Imaging-Based Assessment

2.1.1 Echocardiography

Echocardiography is an important method for evaluating
the heart. However, its interpretation used to rely heavily
on the operator and was time-consuming. Al is changing
this field by enabling fully automated and accurate anal-
ysis, surpassing human performance in certain tasks and
revealing new diagnostic insights.

The most mature applications involve automated quantifi-
cation. Al algorithms can measure left ventricular ejection
fraction (LVEF) with expert-level accuracy, facilitating
reliable serial monitoring even by non-specialists [1,2].
DL models also perform comprehensive cardiac chamber
segmentation, allowing precise quantification of volumes,
mass, and strain (Fig 1) [3]. In disease detection, Al iden-
tifies subtle patterns imperceptible to the human eye, such
as regional wall motion abnormalities (AUC=0.99) [4]
and valvular diseases like aortic stenosis through integra-
tion of 2D and Doppler features [5].
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Fig. 1 Automated cardiac chamber segmentation using a convolutional neural network (CNN).

Representative examples show the model’s perfor-
mance across five standard echocardiographic views by
comparing the original image, expert manual tracing
(ground truth), and automated Al segmentation. The
high agreement between manual and automated outlines
demonstrates the capability of Al to achieve expert-level

quantification of cardiac structures, which is fundamental
for calculating volumes, mass, and strain (A2c: apical
2-chamber; A3c: apical 3-chamber; A4c: apical 4-cham-
ber; PLAX: parasternal long axis). Adapted from Zhang et
al. [3].

Al has demonstrated unique advantages in distinguishing



complex diseases that are difficult to diagnose with tradi-
tional echocardiography. For instance, it can differentiate
constrictive pericarditis from restrictive cardiomyopathy
with an AUC value of 0.96, providing a quantitative solu-
tion to a typical diagnostic challenge [6]. Similarly, Al can
accurately identify cardiac amyloidosis and hypertrophic
cardiomyopathy (C-statistic: 0.87-0.93), tasks that usual-
ly require specialized knowledge from professionals [3].
Notably, the diagnostic ability of Al is comparable to that
of experienced clinicians, with a study showing its perfor-
mance to be equivalent to that of experts (AUC = 0.99 vs.
0.98), and it outperforms resident physicians in detecting
wall motion abnormalities (AUC = 0.90) [4].

In addition to diagnosis, Al has enhanced the ability to
predict prognosis. By combining echocardiographic data
with clinical information, Al models can predict outcomes
such as all-cause mortality, with an accuracy rate (AUC
= 0.82) significantly higher than traditional clinical risk
scores (AUC ranging from 0.69 to 0.79) [7]. This capabil-
ity transforms echocardiography from a purely diagnostic
tool into a predictive engine for personalized medicine.

2.1.2 Cardiac computed tomography

Cardiac computed tomography (CT), particularly coronary
CT angiography (CCTA), is a first-line non-invasive tool
for coronary anatomical evaluation, though its traditional
interpretation remains labor-intensive and subjective. Al
integration is transforming CCTA from a purely anatom-
ical tool into an automated, functional, and prognostic
platform.

In quantitative analysis, Al achieves expert-level accu-
racy. DL models enable fully automated coronary artery
calcium (CAC) scoring, with one multi-center model (n >
20,000) showing strong agreement with manual scoring
and serving as an independent predictor of events (HR =
4.3) [8]. Al also accurately quantifies epicardial adipose
tissue (EAT), where volume and attenuation correlate with
cardiovascular risk, offloading repetitive tasks and provid-
ing objective measurements [9].

For disease diagnosis, Al enhances CCTA value by auto-
matically detecting >25% stenosis with high sensitivity
(93%) and specificity (95%), rivaling expert performance
[10]. Beyond stenosis, Al enables precise plaque anal-
ysis—including vulnerable plaque identification—and
bridges anatomy with function by non-invasively com-
puting fractional flow reserve (FFRct) from CCTA (AUC
= 0.84 for predicting FFR <0.8), aiding revascularization
decisions [11,12].

In risk stratification, Al excels by integrating CCTA-de-
rived features (plaque composition, segment scores) with
clinical data to predict individual long-term risk. Models
from the CONFIRM registry predicted 5-year all-cause
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mortality (AUC = 0.77-0.79), significantly outperforming
traditional risk scores, highlighting AI’s ability to extract
imperceptible prognostic cues for personalized early
warning [13,14].

2.2 Breakthroughs of AI in CVD Physiological
Signal Processing

2.2.1 Electrocardiogram

Traditional electrocardiogram (ECQ) interpretation relies
heavily on clinician expertise, often lacking sensitivity for
paroxysmal arrhythmias and early cardiac dysfunction.
Al particularly DL, now enables automated, in-depth
ECG analysis, significantly advancing cardiovascular risk
assessment and early diagnosis.

In arrhythmia detection, Al excels in early identification
of atrial fibrillation (AF). Using CNNs, models can ana-
lyze sinus thythm ECG to detect subtle features of atrial
electrophysiological remodeling [15]. A model trained on
650,000 ECGs predicted AF risk from 10-second sinus
rhythm segments (AUC=0.87), improving to AUC=0.90
with repeated tracings [16]. Al also outperforms general
cardiologists in multi-class arrhythmia diagnosis, accu-
rately categorizing 12 rhythm types [17].

A breakthrough lies in cardiac function assessment, where
Al predicts LVEF from routine ECGs. One CNN model,
trained on paired ECG-echocardiography data, identified
patients with LVEF <35% with an AUC of 0.93 and accu-
racy around 86% [18]. Notably, Al-positive patients with
initially normal echocardiography had a fourfold higher
risk (HR=4.1) of progressing to overt dysfunction, indi-
cating an ability to detect electrophysiological abnormal-
ities during compensatory phases and providing a critical
window for early intervention [18].

2.2.2 Wearable Devices

Advances in Al have transformed consumer wearable
devices into effective tools for cardiovascular monitoring,
enabling medical-grade arrhythmia screening through
photoplethysmography (PPG) and DL. This shift facili-
tates continuous, real-world AF detection outside clinical
settings.

Despite susceptibility to motion artifacts, DL models
(e.g., CNN, LSTM) achieve high AF classification accu-
racy, with reported sensitivity of 94.80% and specificity
of 96.96%. Models operating on dynamic wearable data
(AUROC: 0.977) perform comparably to those using
in-hospital resting data (AUROC: 0.983), demonstrating
strong robustness [19].

The Apple Heart Study, a large-scale virtual trial with
over 410,000 participants, confirmed real-world feasibil-
ity. The algorithm showed high specificity, with irregular
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pulse notification rates of 0.52% overall and 3.2% in high-
risk older adults. Among those completing follow-up, the
positive predictive value reached 84%, with 89% of AF
episodes lasting over one hour, and 57% of notified par-
ticipants sought clinical consultation, forming an effective
monitoring-intervention loop [20].

However, challenges remain, including low user compli-
ance—only 20.8% completed confirmatory testing in the
Apple study—as well as signal artifacts, limited generaliz-
ability, and insufficient sensitivity data [19]. As wearables
diversify into rings and patches, enabling seamless mon-
itoring, Al-driven screening promises a shift toward dy-
namic, personalized, and preventive cardiovascular care.

2.3 Al-Driven Multimodal Risk Prediction and
Precision Management

Al is reshaping the cardiovascular risk assessment para-
digm by integrating multimodal data—such as EHRs and
medical imaging—to enable dynamic, individualized pre-
diction of hard clinical endpoints like HF hospitalization
and mortality.

In risk prediction, Al-driven analysis of EHR leverages

both structured data and clinical text to capture complex,
nonlinear relationships for prognosticating outcomes. For
instance, one study employing logistic regression and gra-
dient boosting methods integrated 179 clinical variables,
successfully identifying high-risk individuals for HF six
months before clinical diagnosis, highlighting AI’s poten-
tial for long-term risk early warning and stratified man-
agement [21].

A significant advancement is the incorporation of non-tra-
ditional data sources such as retinal images, which serve
as a non-invasive window into systemic microvascular
health. Al-based analysis of retinal images (rpCVD) per-
forms comparably to the WHO risk model in predicting
10-year cardiovascular events (AUC: 0.672 vs. 0.693)
[22]. Furthermore, in patients with coronary artery dis-
ease, retinal Al models can efficiently screen for mild cog-
nitive impairment (MCI), achieving AUCs of 0.832 and
0.776 in internal and external validation sets respectively
(using MMSE <27 as threshold), thereby revealing clini-
cally significant heart-brain comorbidity risks (see Fig. 2
for the Al development workflow) [23].
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Fig. 2 Workflow for developing and validating a DL model to screen for MCI using retinal
images [23].

This Al model, which achieved high predictive accuracy
(AUC: 0.832-0.776) in validation sets, was developed
through a structured process: (A) recruitment of partici-

pants and fundus image acquisition; (B) comprehensive
data preprocessing and division into training, validation,
and test sets; (C) design and training of an ensemble DL



model (based on ResNet and Inception architectures)
to output predictions for standard cognitive assessment
scores (MMSE/MoCA).

Beyond prediction, Al is redefining risk factor assessment
through DL. Algorithms can automatically extract hun-
dreds of subtle vascular features from color fundus photo-
graphs (CFPs) to construct predictive models. Poplin et al.
[24] developed a model using only retinal images to pre-
dict 5-year major adverse cardiovascular event (MACE)
risk (AUROC = 0.73), a performance comparable to con-
ventional risk calculators. More innovatively, Al-derived
biomarkers such as “retinal age gap” (the difference be-
tween retinal age and chronological age) have been shown
to significantly predict stroke risk (HR = 2.37), offering a
novel digital biomarker of vascular aging [25].

These tools show high clinical feasibility, with retinal im-
aging being rapid (<2 minutes), successful (93.9%), and
well-accepted by patients and clinicians [22]. However,
challenges remain regarding cost, trust, and data integra-
tion. Future work should focus on optimizing algorithms
for high-risk groups, multicenter validation, and deeper
EHR integration.

3. Discussion

3.1 Limitations

Despite its potential, the clinical application of Al in CVD
management faces three major challenges.

First, data quality and bias issues significantly limit model
performance. Al models rely on EHRs and medical imag-
es, which often come from single sources with inconsis-
tent annotations. Variability in data collection protocols,
equipment, and patient demographics across institutions
leads to substantial heterogeneity, causing performance
degradation when models are applied to new settings.
Limited data for rare diseases or specific demographic
groups can introduce systematic biases and worsen health-
care disparities [26]. Additionally, strict privacy regula-
tions hinder data sharing and large-scale, high-quality
dataset curation [27].

Second, the lack of interpretability and trust in AI mod-
els impedes clinical adoption. The “black-box™ nature
of many DL systems makes it difficult for clinicians to
understand Al-driven decisions, eroding confidence—
especially when errors occur [28]. Poor model calibration
may also lead to mismatches between predicted proba-
bilities and actual outcomes, affecting clinical reliability
[29]. Although techniques like saliency maps and feature
importance analysis are being developed to improve trans-
parency, they remain early-stage and lack standardization.
Third, there are numerous obstacles in the clinical integra-
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tion process. Embedding Al tools into existing workflows
requires redesigning the nursing process, extensive sys-
tem integration, and comprehensive training for all staff
[30]. Currently, there is still a lack of sufficient practical
evidence to prove that Al tools can improve patient treat-
ment outcomes or reduce medical costs. The regulatory
framework for medical devices based on Al (especially
self-learning algorithms) is still evolving, and the stan-
dards for assessing their safety and effectiveness are not
yet clear. Moreover, due to the lack of clear accountability
criteria for medical errors related to Al, this further hin-
ders its application [5].

Therefore, for Al to be widely used in cardiology, it is
necessary to overcome obstacles in data quality, model in-
terpretability, and clinical integration. Solving these chal-
lenges requires interdisciplinary collaboration to promote
technological progress, establish standards, and improve
regulatory policies.

3.2 Future Directions

Despite some challenges, the prospects of Al in cardiolo-
gy remain broad, with several key directions emerging.
LLMs have great potential in patient management and
medical research. By processing natural language, LLMs
can automate patient communication, generate clinical
records, and extract insights from research data. When
combined with multimodal health data (including medical
images, EHRs, and genomics data), LLMs will become
intelligent integrated tools, significantly enhancing clini-
cal decision support and resource utilization efficiency [5,
31].

Patient-centered Al systems that utilize continuous learn-
ing will be able to conduct dynamic and personalized risk
assessment and intervention. Using real-time data from
wearable devices (such as ECGs, photoplethysmogram)
these models will continuously adapt to individual patients
and the changing clinical environment, shifting care from
response to prevention and promoting early intervention
[30].

Al will not replace clinicians but will enhance doctors’
capabilities in precision medicine. By revealing subtle
patterns beyond human perception and automating tedious
analytical tasks, Al can support complex decisions such as
risk classification, treatment optimization, and prognosis
assessment. This collaboration enables treatment plans to
be more information-based and more personalized [5, 30].

4. Conclusion

The application of Al in the field of cardiovascular medi-
cine represents a significant shift from traditional subjec-
tive assessment to a data-based, precise, and predictive
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care model. In this review, the transformative impact of
Al on various aspects of CVD assessment has been elabo-
rated. In cardiac imaging, Al algorithms can now quantify
ejection fraction, cardiac chamber volume, and coronary
artery calcification with expert-level accuracy, while also
identifying subtle features of diseases such as cardiac
amyloidosis and constrictive pericarditis. In physiological
signal analysis, DL models extract previously inaccessi-
ble key information from ECGs and pulse wave signals,
enabling the early detection of AF and even predicting as-
ymptomatic left ventricular dysfunction—demonstrating
the ability to identify risks long before clinical symptoms
appear.

The most convincing aspect is the ability of Al to integrate
and interpret multimodal data. By integrating data from
EHRs, retinal images, and wearable devices, Al provides
an overall view of an individual’s cardiovascular health.
It is no longer limited to a single diagnostic task but offers
comprehensive risk stratification analysis, capable of pre-
dicting serious clinical endpoints such as hospitalization
for HF and death, with a prediction effect that exceeds
traditional risk models. Innovative technologies such as
“retinal age gap” and Al-based vascular indicators are
redefining traditional risk factors, providing non-invasive
and scalable biomarkers for large-scale population screen-
ing and personalized prevention.

However, transforming Al from the research stage to rou-
tine clinical practice is still an ongoing process. A series of
major challenges must be overcome, including concerns
about data quality and inherent biases, the “black box”
nature of complex algorithms, and the practical issues of
embedding Al tools into existing clinical workflows. The
interpretability of models, compliance, and the need for
real-world validation are key obstacles that require inter-
disciplinary collaboration to solve.

Looking ahead, the future of Al in cardiology is bright and
points toward more intelligent, adaptive, and human-cen-
tered healthcare systems. The emergence of LLMs offers
new potential for managing patient data and assisting clin-
ical decision-making. Continuous learning Al systems can
evolve with new data, maintaining relevance and accuracy
over time. Most importantly, Al will serve as a powerful
collaborator to clinicians—enhancing their capabilities,
automating routine tasks, and supporting more informed
and personalized patient management. It is not a replace-
ment for human expertise but a catalyst for a new era of
precision cardiology, where technology and clinical wis-
dom combine to improve outcomes, enhance efficiency,
and transform the patient experience.
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