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Abstract:

Ensuring high product quality has become increasingly
important in modern manufacturing. Traditional manual
inspection and basic machine vision systems often perform
not well in accuracy, efficiency, and robustness, especially
in complex industrial environments. Convolutional
Neural Networks (CNNs), which is a technology in
deep learning specialized for visual data, have shown
great potential in product defect detection. A broad
range of recent CNN-based methods for product defect
detection is systematically reviewed in this article by
classifying existing methods into three major types:
baseline CNN models, attention-based models, and hybrid
CNN frameworks. Baseline models such as MobileNet,
ResNet, and EfficientNet focus on improving accuracy
and computational efficiency. Attention-based models
incorporate spatial and channel attention mechanisms to
localize subtle defects better. Hybrid models combine
CNNs with techniques like Random Forests or adaptive
fusion strategies to improve robustness across varied defect
types and product conditions. In addition to summarizing
technical advancements, this paper highlights three critical
challenges that hinder real-world deployment: (1) lack of
model interpretability, (2) limited applicability, and (3)
difficulty in deploying models on resource-constrained
edge devices. To address these, this paper further discusses
promising solving directions, including the integration of
domain knowledge and expert systems, domain adaptation
and generalization strategies, and model optimization
methods like model pruning, reduced-precision
quantization, and student—teacher distillation frameworks.
Overall, this review provides a systematic overview,
offering valuable insights for researchers and engineers,
and explores future research paths for enhancing CNN-
based defect detection in manufacturing.

Keywords: Convolutional neural network; defect detec-
tion; industrial inspection.
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1. Introduction

In modern manufacturing industries, product quality is a
key factor in customer satisfaction, market competitive-
ness, and enterprise reputation. A defect in a product can
not only influence its function and safety, but also lead to
tremendous loss on economy, product recalls, and serious
brand damage. As industries move toward intelligent and
automated production lines, ensuring high product quality
through accurate and timely defect detection has become
a critical challenge.

Traditionally, product defect detection majorly relies on
manual inspection or simple machine vision systems [1].
Although manual inspection is intuitive, it is often la-
bor-consuming, uncontinuous, and tend to cause manul
error, especially under high throughput conditions. Simple
machine vision system methods, on the other hand, lack
flexibility and robustness when faced with complex or
subtle defect patterns. These limitations have created a
growing demand for intelligent, scalable, and high-accu-
racy inspection solutions.

Recent advancements in Artificial Intelligence (Al), es-
pecially in deep learning techniques, have significantly
brought numerous new possibilities to product defect
detection. For example, CNNs, a classical model of deep
learning specifically designed for visual data, have demon-
strated exceptional performance in a variety of computer
vision tasks ranging from assigning class labels to images,
identifying object locations, to understanding pixel-level
image content [2]. Because they can automatically extract
multi-level visual representations from raw images, CNNs
are particularly tailored for detecting subtle and complex
product defect detection, where defects often appear in
various shapes, sizes, and textures etc.

A growing number of researches have explored approach-
es based on CNNs for product defect detection across var-
ious industrial domains. These approaches have demon-
strated strong performance in tasks of product defect
detection such as surface inspection, assembly line quality
control, and component integrity assessment. For instance,
in 2017, Wang et al. developed a fast and robust CNN
model, which was particularly designed for detecting de-
fects in product quality inspection, achieving high accura-
cy and efficiency in real-world industrial manufacture [3].
More recently, combining with deep CNNs and machine
vision, a product defect detection architecture was pro-
posed by Kaushal A Desai et al. in 2022, further improv-
ing the robustness and generalization of defect detection
under varying conditions [4]. Additionally, the availability
of standardized datasets such as DAGM, MVTec [5], and
KolektorSDD [6], has provided a solid foundation for
CNNs-based methods in product defect detection domain.
Despite the rapid progress in CNN-based defect detection,

several critical challenges still exist. One major issue is
the lack of interpretability which means CNNs are often
regarded as black boxes. This is especially a serious prob-
lem in manufacturing environments with high risks, where
incorrect predictions can lead to significant financial loss-
es. Another concern is the limited applicability of models.
Many CNNs perform well only within narrowly defined
domains or under specific conditions or even on speci-
fied datasets. When applied to different product types,
materials, or production settings, their performance often
becomes worse, requiring frequent retraining and data col-
lection. Furthermore, deployment on edge devices is dif-
ficult to realize due to limited memory and computational
resources. Real-time tasks, compatibility with industrial
software, and long-term maintainability all present prac-
tical difficulties. All these issues highlight the need for a
systematic review that not only summarizes the state-of-
the-art methods, but also critically appoints key limita-
tions such as interpretability, adaptability, and deployment
constraints.

Motivated by the importance of product quality assurance
and the rapid growth of CNNs-based solutions, this paper
aims to provide a comprehensive survey of recent ad-
vances in CNNs-based product defect detection. The ob-
jective is to summarize and analyze the current methods,
highlight their contributions and differences, and point
out challenges to be solved. The structure of the paper is
arranged as follows. In Section 2, an overview of some
CNNs-based defect classification methods is presented.
Section 3 provides a critical discussion of current lim-
itations, emerging trends and future research. In the end,
Section 4 concludes the total article.

2. Methods

In the domain of product defect classification, due to ex-
cellent capacity to learn hierarchical features from visual
data, CNNs have shown remarkable success. Section 2
outlines the major categories of CNN-based methods
which are applied to product defect detection, including
baseline CNN architectures, attention-enhanced CNN
models, and hybrid CNN models.

2.1 Baseline CNN Models

Baseline CNN models serve as the foundational backbone
for defect classification tasks. These networks, initially
developed for image classification, have been widely ad-
opted in industrial applications owing to their robustness
and adaptability.

2.1.1 MobileNet

MobileNet, firstly proposed by Howard et al., is a light-
weight CNNs architecture designed for efficient compu-



tation on mobile devices [7]. It makes use of separable
convolutions to reduce the number of parameters and
computational cost, making it suitable for real-time defect
classification on the resource-constrained devices.

In product quality inspection tasks, Zhang et al. proposed
an improved MobileNetV2-SSDLite architecture which
was tailored for fabric defect detection under a cloud-edge
collaborative framework. As a lightweight adaptation of
the Single Shot MultiBox Detector (SSD), SSDLite re-
duced computational complexity by applying depthwise
separable convolutions in the detection module. The mod-
el was deployed at the edge devices for real-time fabric
defect detection, while the cloud platform was responsible
for data management and training, realizing a real-time
and high-efficiency fabric defect detection pipeline [8].

2.1.2 ResNet

In the PCB manufacturing industry, detecting cosmetic
defects is becoming increasingly challenging due to the
complexity of modern boards. To solve this problem,
Zhang et al. proposed CS-ResNet, a cost-sensitive vari-
ant of ResNet-50 tailored for PCB inspection. The model
maintains ResNet’s residual architecture with shortcut
connections to ease gradient flow and stabilize training. A
key innovation is the cost-sensitive adjustment layer add-
ed after the fully connected layer. This layer reweights the
loss based on class distribution and misclassification cost,
allowing the model to focus more on rare real defects and
reduce false alarms. The overall pipeline includes stan-
dard CNN components: convolution, batch normalization,
ReLU, ResBlocks, global average pooling, and a final
cost-sensitive output. This design improves accuracy and
recall on imbalanced datasets while maintaining high effi-
ciency, making CS-ResNet well-suited for real-time PCB
quality control systems [9].

2.1.3 EfficientNet

EfficientNet, proposed by Tan and Le, is a family of
CNNs. Through jointly adjusting the model’s number
of layer, channels per layer, and input resolution, it can
enhance accuracy and efficiency [10]. Compared to tra-
ditional CNNs, EfficientNet significantly reduces the
number of parameters and FLOPs while maintaining the
same accuracy or even improving, making it suitable for
deployment in real-world industrial inspection tasks.

Several recent studies have shown that EfficientNet of-
fers notable improvements in handling surface defects in
product inspection. For example, one research integrated
EfficientNet with YOLOVS5 for steel surface defect de-
tection, demonstrating notable improvements in mean
average precision and classification accuracy [11]. In this
approach, the original YOLOvVS5 backbone network is re-
placed with EfficientNet variants, aiming to leverage their
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superior feature extraction capabilities. Another study
evaluated EfficientNet-B3 against MobileNetV2 and Res-
Net-50 on a steel defect classification task, and the results
showed that EfficientNet-B3 achieved a higher recall rate
with fewer false positives, indicating its superior robust-
ness in identifying subtle defects [12].

2.2 Attention-Based CNN Models

Attention mechanisms enhance CNNs by allowing them
to focus on the most relevant regions of an input image,
which is particularly useful in defect detection where de-
fects are often subtle.

2.2.1 Complementary Attention Network (CAN)

To improve defect detection accuracy under complex
backgrounds, Zhao et al. proposed the CAN, which was
equipped with an advanced dual-branch attention module
[13]. The key innovation lies in combining channel-wise
attention and spatial attention to allow the network to fo-
cus on both “what” and “where” to look when identifying
defects in solar cell electroluminescence images.

In the channel-wise attention subnetwork, Global Average
Pooling (GAP) and global max pooling (GMP) features
are concatenated and passed through convolution oper-
ations. This design preserves more discriminative infor-
mation. Next, the spatial attention subnetwork processes
the channel-refined features to generate a spatial attention
map that emphasizes relevant spatial locations.

Overall, CAN acts as a plug-and-play attention filter that
enhances CNN representational power, especially under
complex background disturbances. Experiments demon-
strate that CAN significantly outperforms traditional
attention mechanisms such as CBAM in solar cell defect
detection, making it a promising solution for industrial
quality inspection tasks.

2.2.2 Object-Level attention mechanism with Bi-CAM

Hu and Wang proposed an efficient CNN model tailored
for detecting defects in complex and various industrial
scenarios [14]. A novel object-level attention mechanism
is integrated into the model, enabling it to localize and
emphasize regions containing defects during training. This
is achieved without the need for additional network struc-
tures. In order to improve the model’s capacity to distin-
guish subtle differences, they incorporate bilinear pooling
layers, allowing interactions between feature channels.
Furthermore, to improve interpretability of the model and
better suit the bilinear architecture, the authors propose a
variant of traditional CAM named Bilinear Class Activa-
tion Maps (Bi-CAM). Bi-CAM serves as a visualization
technique to help to highlight the specific image regions
that contribute to the model’s predictions.
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2.3 Hybrid CNN Models

Hybrid models combine CNNs with other machine learn-
ing algorithms to enhance complementary strengths and
improve robustness, accuracy and other performance pa-
rameters in varying datasets or conditions.

2.3.1 Convolutional Neural Network and Random For-
est (CNN-RF)

In 2024, Banerjee et al. proposed a hybrid CNN-RF
model for accurate casting defect forecasting [15]. The
integration of deep learning techniques with conventional
machine learning methods has shown notable effective-
ness in defect classification tasks. In this approach for
defect detection, a CNN is first used to extract high-level
visual features from input images. Instead of relying on a
fully connected layer for classification, these features are
passed to a Random Forest (RF) classifier.

This two-stage framework takes advantage of CNNs’
ability to learn discriminative representations and RF’s
robustness, especially when dealing with small datasets or
datasets with noise. RF is then trained on CNN-extracted
features, enhancing overall accuracy and interpretability.
Results demonstrate improved detection performance
compared to using CNN alone.

2.3.2 Hybrid attention network with ASFF

Aiming to solve the problems in detecting intricate or
fine-grained steel surface defects, Zhou et al. proposed a
hybrid attention-based convolutional architecture that en-
hances detection accuracy through three key innovations
[16].

Firstly, to improve feature representation by combining
both spatial and channel attention mechanisms, the Con-
volutional Block Attention Module (CBAM) was intro-
duced. Moreover, a module named Adaptively Spatial
Feature Fusion (ASFF) was applied to the neck of the
network to fuse information across different feature lay-
ers. This allows the model to assign optimal weights to
features from varying resolutions, significantly improving
the detection of defects with various sizes and shapes.
Lastly, the Complete IoU (CIOU) loss function was ap-
plied to improve bounding box regression accuracy and
enhance generalization. Built on YOLOX-S, this hybrid
attention network demonstrated significant performance
gains on detecting fine-grained defects in the NEU-DET
benchmark dataset, outperforming standard models such
as SSD, YOLOv3. These enhancements demonstrate the
effectiveness of integrating multiple attention mechanisms
and adaptive fusion strategies into CNN-based architec-
tures for industrial defect detection tasks.

3. Discussion

Despite recent advances in CNN-based defect detection
models, the field still faces several crucial challenges that
limit the practical deployment and scalability of these sys-
tems. These challenges are primarily rooted in the inherent
limitations of deep learning models and their interaction
with complex real-world and real-time industrial scenari-
os. This paper discusses three main challenges—interpret-
ability, applicability, and deployment constraint and then
outlines promising directions which have the possibility to
address these challenges.

3.1 Challenges and Limitations

3.1.1 Interpretability

A persistent challenge in deploying CNNs for industrial
defect detection tasks is poor interpretability of models.
As being called black-box models, CNNs often produce
predictions without providing humans with convincing
reasons. This opacity is particularly a serious problem in
manufacturing environments which aims to high quality of
products. For instance, classifying a non-defective product
as defective product by mistake could result in unneces-
sary waste and financial loss, while missing a defect may
lead to safety hazards or brand damage. Moreover, some
defects such as micro cracks, subtle surface abrasions are
inherently difficult to localize or classify because of their
small sizes or irregular patterns. Current interpretability
techniques, like CAM or Bi-CAM, provide some insight
into this problem. However, these methods often lack con-
sistency and do not align well with engineering judgment.
This gap between model output and domain reasoning
remains a crucial issue to be solved.

3.1.2 Limited applicability

Another major concern is the poor generalization ability
of many CNN-based models. While high performance
can be achieved on specific datasets or well-controlled
product lines, model accuracy usually decreases when
model is applied to different product types, materials, or
manufacturing environments. For example, some slight
modifications to a product’s design such as slight changes
in texture, shape, or surface, can result in inefficacy of
previously training on the model. This lack of robustness
means that companies must frequently collect new data-
sets and then retrain models on these datasets to adapt to
each product variation, resulting in increased costs and de-
layed deployment. Given the dynamic nature of industrial
manufacturing in the real world, the inability of models to
adapt to novel conditions remains a bottleneck in defect
detection tasks.



3.1.3 System deployment

Beyond model performance problems, a major challenge
of CNN-based defect detection tasks lies in the deploy-
ment and maintenance of these models in industrial
systems. Unlike training under specific datasets, factory
environments are highly compositive, often composed
of different systems such as control modules, production
pipelines and other complicated platforms. Thus, deploy-
ing a CNN model in such a setting requires compatibility
with real-time communication protocols, integration with
factory management software, and seamless coordination
with sensors on the production pipelines.

And in many cases, deployment is hindered by limited
computational resources on edge devices, or the lack of
standardization in data formats. Even after deployment,
models may require regular updates due to evolving de-
fect patterns or changes in production processes. Howev-
er, frequent retraining and revalidation are rarely feasible
in practice due to the need for production line stability and
the high cost of time. Furthermore, industrial users often
lack access to specialized Al teams, making the long-term
maintenance, debugging, and adaptation of deep learning
models particularly challenging. Without specialized tools
for monitoring model, updating parameters, and managing
failure cases, the system’s reliability can degrade over
time.

3.2 Future Prospects

To address the above challenges, several promising re-
search directions and technical innovations have emerged.
While each of these approaches is still evolving, they offer
ideas to improve model interpretability, adaptability, and
other bottleneck problems.

3.2.1 Incorporating domain knowledge and expert sys-
tems

To improve interpretability and reduce reliance on data-
sets, integrating expert knowledge into CNN models
presents a convincing strategy. Expert systems, rule-based
constraints can help CNNs make decisions that align
with human reasoning. For example, incorporating defect
features or domain knowledge into the loss function or
feature design could enhance model credibility and ro-
bustness. Similarly, attention mechanisms informed by en-
gineering rules can guide the model to focus on physically
relevant regions. This hybrid approach mixes the learning
capacity of CNNs with the interpretability.

3.2.2 Domain adaptation and domain generalization

Since CNNs often perform not well beyond training data,
improving their adaptability to diverse real-world envi-
ronments is essential. Two important research directions
have gained increasing attention: domain adaptation and

Dean&Francis

SHAOQIN CHEN

domain generalization.

Domain adaptation focuses on helping a model trained on
one type of product or dataset work well on another type,
even if the two differ in appearance, materials, or other
conditions. In particular, unsupervised domain adaptation
allows the model to adjust to a new environment without
many labeled samples. Techniques like adversarial learn-
ing [17], aligning feature distributions have shown good
results [18].

On the other hand, domain generalization aims to train
models that can naturally perform well on unseen do-
mains, without any fine-tuning. This is useful when new
products or defect types are introduced. This method
helps the model focus on general patterns rather than do-
main-specific details, making it more reliable across dif-
ferent conditions.

3.2.3 Lightweight and efficient architectures

In real-world manufacturing environments, many defect
detection systems need to run directly on edge devices
such as cameras, sensors, or embedded boards rather than
powerful servers with abundant resources. These devic-
es have limited memory and processing ability, so CNN
models deployed on them require lightweight and efficient
architectures. To meet the real-time and efficiency require-
ments under such limitations, some researches have been
conducted on model optimalization techniques that trans-
form standard deep neural networks into lightweight and
deployable architectures.

Model pruning is a widely adopted method which means
cutting out the parts of a neural network that aren’t real-
ly needed. By removing these unnecessary weights and
connections, the architectures of models become smaller
and have a higher speed, while using less memory and
computing resources. Moreover, a technique called quan-
tization has the ability to reduce the size of the numbers
or arrays used in the model. This method also can make
the model much lighter and helps it run more quickly on
edge devices with limited resources. Besides, there is an-
other method called knowledge distillation that transfers
knowledge from a high-capacity teacher model to a small-
er student model, effectively retaining accuracy while
substantially reducing model size and complexity. The
student picks up the key knowledge from the teacher and
becomes almost as accurate as the teacher, and meanwhile
has a much smaller size and faster speed which is perfect
for deployment on devices with limited capacity. In all,
these techniques can be applied individually or jointly to
compress large-scale models without substantial loss of
performance.
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4. Conclusion

This paper presents a comprehensive review of recent
developments in CNNs for product defect detection in in-
dustrial settings. By analyzing representative approaches
across baseline CNN architectures, attention-based mod-
els, and hybrid frameworks, this article summarizes the
major trends and strategies in this field.

The methods mentioned above demonstrate strong po-
tential in accurately identifying various types of surface
defects in product. Lightweight models offer promising
solutions for real-time applications, while attention mech-
anisms and hybrid models improve detection precision in
complex scenarios. Through discussion, this article iden-
tifies several key challenges that limit current methods,
including poor interpretability, limited applicability across
product domains, and practical deployment difficulties in
factory architectures. These issues highlight the gap be-
tween academic research and industrial needs.

To solve these bottleneck problems, future research should
explore integration of domain knowledge, expert systems,
and advanced techniques to enhance model robustness
and adaptability. Overall, CNN-based defect detection is a
rapidly evolving area with significant promise for improv-
ing quality control in intelligent manufacturing.
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