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A Study on Price Volatility in the Carbon
Emissions Trading Market Based on the
GARCH-ANN Model

Abstract:

Wenhe Wu With the advancement of the global “dual-carbon”

strategy, emissions trading systems (ETS) have gradually
become a central policy tool in driving green economic
transformation. However, sharp fluctuations in carbon
prices not only threaten market stability but also directly
impact corporate emission reduction decisions and long-
term investments. This study innovatively combines the
GARCH model’s ability to capture volatility clustering
with the artificial neural network (ANN)’s strong capability
in modeling nonlinear relationships to construct a GARCH-
ANN hybrid model. The model systematically analyzes
the volatility characteristics of carbon allowance prices
and their dynamic response mechanisms to exogenous
shocks. Taking the EU Emissions Trading System (EU
ETS) and China’s pilot markets as research objects, the
study incorporates high-frequency trading data and policy
dummy variables, and empirically tests the predictive
performance of the hybrid model. The results show that the
hybrid model significantly outperforms single models, and
policy shocks exhibit time-varying effects.
This study provides both corporate green investment
theoretical and empirical sup- decisions, and the intercon-
port for the design of carbon  nection of international carbon
market regulatory policies, markets.

Keywords: Emissions Trading; Price Volatility; GARCH
Model; Artificial Neural Network (ANN); Policy Shock;
Risk Management

1. Introduction pressing challenges of the 21st century. Since the
launch of China’s national carbon trading market
in 2017, it has become the world’s largest market
in terms of greenhouse gas coverage. The carbon
Global climate change has become one of the most  price signal is directly linked to corporate emission

1.1 Research Background and Significance



reduction costs and green investment decisions, making it
a core policy tool for achieving the “dual-carbon” goals.
For example, the GARCH model has been successfully
applied to analyze the volatility patterns of pilot markets,
revealing regional differences such as the shorter volatility
persistence in Hubei and the asymmetry in Guangdong,
thereby providing empirical evidence for policymaking.
However, carbon prices are subject to exogenous shocks
such as sudden policy changes, often resulting in nonlin-
ear jumps. Traditional GARCH models, due to their linear
assumptions and fixed parameters, struggle to accurately
capture the dynamic evolution of such risks.

Moreover, the influence of green financial policies on
carbon prices has often been studied from a static perspec-
tive, lacking a quantitative model of the dynamic response
mechanism of policy tools. In contrast, the GARCH-ANN
model has demonstrated superior performance in forecast-
ing financial market volatility. As a powerful time-series
analysis tool, it combines the GARCH model’s capability
in capturing volatility clustering with the ANN’s nonlinear
fitting abilities, making it possible to precisely model the
complex interplay between price jumps and policy shocks.
By incorporating green financial policies as exogenous
variables, the model can effectively analyze their dynamic
transmission mechanisms, offering a scientific tool for
carbon market risk warning and real-time policy evalua-
tion.

1.2 Research Questions and Innovations

In response to the limitations of traditional models, this
study proposes several innovations:

Perspective Innovation:

A time-varying weighting mechanism for policy shocks is
designed to quantify the marginal effects of green finan-
cial tools, establishing a dynamic connection between pol-
icy and the market. This breaks through the static analysis
used in previous research (e.g., Xia Ruitong, 2018, with
VAR models), allowing for real-time responses of carbon
prices to policy shifts.

Theoretical Innovation:

The GARCH-ANN model is introduced into carbon mar-
ket research for the first time, combining the GARCH
model’s volatility clustering features with the ANN’s
nonlinear fitting capability to address the shortcomings of
traditional models in handling jump risks (in contrast to
the single GARCH analysis by Benz et al., 2009).
Methodological Innovation:

This is the first study to integrate volatility clustering with
nonlinear fitting capabilities and construct a Carbon Price
Jump Risk Index based on the model outputs.

Data Innovation:

A multidimensional analytical framework is established
by integrating multi-source data, including high-frequency
trading data, policy texts, and climate event data.
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2. Literature Review

2.1 Application of GARCH Models in Carbon
Price Volatility Research

The GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) model is a mainstream tool for analyz-
ing volatility in financial time series. Its core strength lies
in capturing volatility clustering and time-varying char-
acteristics, and it has been widely applied to carbon price
studies. For instance, Lii Yongbin et al. (2015) used the
GARCH model to identify significant regional differences
and volatility clustering effects in China’s pilot carbon
markets, pointing out that policy interventions are a major
driving factor. Subsequent studies extended this work by
incorporating models such as EGARCH and TGARCH.
Liu Honggqin et al. (2022) used the TGARCH model to
verify the asymmetric impact of the COVID-19 pandemic
on carbon price volatility. Benz et al. (2009) applied a
GARCH model to the EU ETS and confirmed a “spiky
and fat-tailed” distribution in carbon prices, highlighting
the combined effects of energy prices and policy events.
However, most existing studies are limited to single time
series modeling and pay insufficient attention to jump
risks and the dynamic linkage between external policy
variables and carbon price volatility. Scholars continue to
explore the complex features of carbon price fluctuations.
For example, Huang et al. (2021) combined LSTM with
GARCH to forecast carbon price volatility, but their mod-
el lacked interpretability and could not separate the mar-
ginal contributions of policy shocks. Traditional GARCH
family models are not well-suited to capturing nonlinear
jump events and are also limited in incorporating real-time
policy signals from high-frequency data.

2.2 Advances in ANN and Hybrid Models

Artificial Neural Networks (ANNs), inspired by the struc-
ture of biological neural networks, use multiple layers of
nonlinear transformations and strong adaptive learning
capabilities to effectively identify complex volatility pat-
terns in time series data. ANN models have shown high
accuracy in multivariable prediction tasks, such as cus-
tomer churn forecasting in the banking sector and stock
market predictions, but applications in carbon markets
remain scarce. Fu Shengyang and Guo Dongping (2020)
applied ANN models to microloan credit risk management
but found that while the model could reveal some rela-
tionship between cash flow characteristics and client risk
levels, its accuracy was limited. Wen Liu (2021) made a
breakthrough by combining ANN with GARCH to fore-
cast copper spot market volatility and conducted system-
atic model performance comparisons.

2.3 Research Gaps and Breakthrough Direc-
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tions

There are still significant gaps in the study of carbon
emission allowance price volatility, particularly in terms
of model innovation and the quantification of policy ef-
fects. In carbon markets, the coexistence of linear assump-
tions in GARCH and the adaptive learning nature of ANN
means that predictive modeling of volatility, trends, and
details remains underexplored. Existing studies tend to
treat green finance policies as static variables, neglecting
to model their dynamic transmission paths. ANN models
are well-suited to extracting features from spatial dimen-
sions, while GARCH models offer strong explanatory
power in finance. This study introduces the GARCH-
ANN model into the carbon market context, combining
GARCH’s ability to capture volatility clustering with
ANN’s nonlinear fitting strengths to quantify the margin-
al effects of green financial tools. The resulting Carbon
Price Jump Risk Index provides market participants with
real-time risk management tools and offers theoretical and
practical support for maintaining market stability and pre-
cise policy adjustments under the “dual-carbon” goals.

2.4 Innovation in Policy Tools

In recent years, the policy design of the EU Emissions
Trading System (EU ETS) has become a focal point of
academic attention. Fuss et al. (2023) simulated the in-
troduction of the Carbon Border Adjustment Mechanism
(CBAM) using a Dynamic Stochastic General Equilib-
rium (DSGE) model and found that in the short term,
CBAM would increase the volatility of EUA prices by
approximately 15%. However, its long-term impact would
be mitigated by adjustments to the allocation mechanism.
Research on the U.S. Regional Greenhouse Gas Initiative
(RGGI) shows that regional carbon markets exhibit sig-
nificantly lower volatility than the EU ETS, primarily due
to more stable allocation rules.

2.5 Deepening Research on China’s Carbon
Market

Since its launch in 2021, China’s national carbon mar-
ket (CN ETS) has attracted attention regarding its price
formation mechanism. A panel data model found that the
carbon price in the initially included power sector is sig-
nificantly sensitive to the looseness of quota allocation
(calculated by the benchmark method), with a sensitivity
coefficient of -0.34 (p < 0.01), indicating that quota allo-
cation is the main driver of short-term volatility. Further
analysis suggests that green finance policies—such as the
issuance of carbon-neutral bonds—have a delayed, sig-
nal-based stabilizing effect on carbon prices, with an esti-
mated lag of about three months. These studies provide a
micro-level basis for dynamic policy modeling but have
yet to address the quantification of nonlinear jump risks.

3. Theoretical Framework and Re-
search Hypotheses

3.1 Theoretical Basis of the GARCH Model

The GARCH (Generalized Autoregressive Conditional
Heteroskedasticity) model, proposed by Bollerslev (1986),
describes the time-varying characteristics of volatility
through conditional variance. Its basic form is:

0% = Olo + 0u€%-1 + P10%1

Here, 0% denotes the conditional variance and ¢ is the re-
sidual term. The parameters o and B measure the sensitiv-
ity to short-term shocks and the persistence of long-term
volatility, respectively.

3.2 Nonlinear Advantages of the ANN Model

Artificial Neural Networks (ANNs) use multi-layer neu-
rons and nonlinear activation functions (e.g., ReLU, Sig-
moid) to approximate any complex function. For jump
volatility in carbon markets (e.g., price spikes due to
sudden policy shifts), ANNs can learn nonlinear patterns
from historical data, compensating for the limitations of
GARCH models.

3.3 Mathematical Expansion of the GARCH
Model

The GARCH(1,1) conditional variance equation:

0% = 0o + oug*-1 + 101, where a + B < 1 ensures station-
arity.

a reflects sensitivity to short-term shocks (like policy
shifts), and B represents long memory in volatility (e.g.,
delayed effects from industrial restructuring).

To capture asymmetry, it can be extended to the EGARCH
model:

In(c%) = ® + Bln(c?-1) + alec1| + ye-

When y # 0, the model can identify leverage effects, indi-
cating that negative shocks have a greater impact.

3.4 ANN Structure and Learning Mechanism

A multi-layer perceptron (MLP) can be represented as:

¥ =fa(W2 * fi(Wix + bi) + b2)

Here, fi is the hidden layer activation function, and f2 is
the output layer activation (usually linear). The backprop-
agation algorithm uses the chain rule to compute gradients
and updates weights via stochastic gradient descent (SGD)
to minimize the loss function (e.g., MSE).

3.5 Fusion Logic of the Hybrid Model

The synergy of GARCH-ANN lies in information com-
plementarity: GARCH extracts low-dimensional volatility
features, while ANN incorporates multidimensional exog-
enous variables (policy, climate, energy prices) to capture



nonlinear interactions. The dynamic weighting mechanism
reflects the time-varying nature of policy effects, theo-
retically grounded in the Time-Varying Parameter (TVP)
framework of state-space models.

3.6 Research Hypotheses

H1: Carbon price volatility exhibits significant clustering
and leverage effects (negative shocks have stronger im-
pacts).

H2: Policy shocks (e.g., carbon tariffs) induce nonlinear
jump volatility. Traditional GARCH models show sig-
nificantly higher forecasting errors under such conditions
compared to the hybrid model.

H3: The introduction of climate event markers and dy-
namic policy variables significantly improves out-of-sam-
ple forecasting accuracy.

4. Research Design and Methodology

4.1 Data Sources and Preprocessing

(1)Data Sources

Carbon Market Data:

EU ETS: Daily carbon price (EUA futures closing price)
and trading volume from 2005 to 2023 (source: European
Energy Exchange).

China’s Pilot Markets: Daily carbon prices for Hubei and
Guangdong from 2017 to 2023 (source: local exchange
websites).

Exogenous Variables:

Policy Events: CBAM implementation date, launch of
China’s national carbon market (source: government bul-
letins).

Energy Prices: Brent crude oil futures prices (source: In-
vesting.com).

Climate Events: Number of extreme heat days in the EU
(source: NOAA Global Climate Database).

(2)Data Preprocessing

Missing Values: Linear interpolation used for missing car-
bon prices; policy variables set to 0 when missing.
Stationarity Test: ADF test conducted on carbon return
series to confirm stationarity.

Normalization: Min-max normalization applied to trading
volume and energy prices to eliminate scale effects.
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4.2 GARCH-ANN Hybrid Model Construction

(1)Model Architecture

GARCH Module:

A GARCH(1,1) model extracts conditional volatility,
which is used as an input feature for the ANN.

ANN Module:

Input Layer: Includes lagged returns (1-5 periods),
GARCH conditional volatility, policy dummies, oil prices,
and climate event markers.

Hidden Layers: Two layers with 64 and 32 nodes, using
ReLU activation.

Output Layer: Predicts the next-period return of carbon
prices.

Dynamic Policy Weighting Mechanism:

Policy variables decay over time, e.g.,

D, =exp(—At)-1, where A is the decay factor.

(2)Model Training and Optimization

Loss Function: Mean Squared Error (MSE)

Optimization Algorithm: Adam

Hyperparameter Tuning: Bayesian optimization used to
tune layer sizes, learning rate, and decay factor A.

4.3 Evaluation Methods

Dataset Split: Training (2013-2021), validation (2022),
testing (2023)

Evaluation Metrics: MSE, MAE; model comparison via
Diebold-Mariano test

Robustness Checks: Replace GARCH with EGARCH/
TGARCH; compare rolling vs. expanding windows

4.4 Implementation of the Dynamic Policy
Weighting Mechanism

Policy Effect Decay Function:
D, = exp(—/lt)-l
Grid search for A (range: 0.01-0.1) identified 0.05 as opti-

mal (half-life = 14 days)

S. Empirical Results and Analysis

5.1 Descriptive Statistics and Volatility Charac-
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teristics
Variables Mean SD Skewness Kurtosis
Price of EUA(€) 452 187 0.32 415
Yield Rate (%) 0.05 2.83 -0.56 6.89
Crude Oil Price ( $) 68.4 221 0.18 2.97
Model MSE (x107%)

GARCH(1,1) 4.72

ANN 3.85

GARCH-ANN 3.01

Table 1. Descriptive Statistics of Key
Financial and Environmental Variables
Autocorrelation functions (ACF) of return series show
volatility clustering, with significant short-term correla-
tion (lag 1 ACF = 0.38, p < 0.01). EGARCH estimation
reveals leverage effects—negative shocks (coefficient
= 0.21, p < 0.05) exert greater influence than positive

ones—supporting HI.

5.2 Model Performance Comparison

MAE (%) DM Test
1.98 -

173 0.024*
1.42 -

Table 2. Comparative Model Performance Metrics with Diebold-Mariano Test Results

(1)The hybrid model demonstrates clear advantages:
GARCH-ANN reduces MSE by 36.2% compared to
GARCH, and by 21.9% compared to ANN alone.

During the CBAM implementation in 2023, GARCH-
ANN had an MAE of 1.25%, significantly lower than
GARCH (1.89%).

(2)Policy Shock Insights:

Short-term: CBAM led to a 28% increase in carbon price
volatility in the first month.

Long-term: Policy effects decayed exponentially (half-
life = 6 months), captured well by the dynamic weighting

Carbon Emlsswn Rights Trading Data
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mechanism.

5.3 Robustness Tests

Model Substitution: Replacing GARCH with EGARCH
yielded similar MSE (3.12), showing stability.

Window Analysis: Rolling and expanding window fore-
casts yielded consistent results, indicating temporal ro-
bustness.

5.4 Visualization and Policy Impact
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Table 3. Carbon Emission Right Trading Data



Emission Rights Trading Data
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ammonia nitrogen

the first quarter of 2023
[ ] COD : 28,562.93
54,486.09

. 302 27 890.00

oxynitride: 21,442.34
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Table 4. Emission Rights Trading Data

Key events annotated on the timeline include:
2017: Launch of China’s pilot carbon markets
2022: European energy crisis

Model

GARCH-ANN

LSTM

RF

MSE (x1073)
3.01
3.78

412

2023: CBAM implementation

5.5 Efficiency and Trade-Offs

MAE (%)
1.42
1.67

1.85

Table 5. Performance Comparison of Forecasting Models Using MSE (x107*) and MAE (%)

The hybrid model achieves an effective balance between
computational cost and forecasting accuracy.

6. Conclusion and Policy Implications

6.1 Conclusions

(1)Comparison of GARCH and ANN Models:

GARCH effectively captures volatility clustering and het-
eroskedasticity.

ANN handles complex nonlinear relationships, improving
forecasting during policy or market shocks.
(2)Advantages of the GARCH-ANN Hybrid Model:
Outperforms single models by combining

strengths, GARCH handles clustering; ANN models non-
linear responses.

6.2 Policy Recommendations

(1)Market Risk Management:

Regulators should monitor price volatility and use
GARCH-ANN based tools to anticipate risks and guide
market interventions.

(2)Policy Design:

Carbon price fluctuations are driven not only by sup-
ply-demand dynamics but also by policy and global con-
ditions.

Policymakers should consider exogenous shocks and im-
prove market transparency to mitigate volatility.
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(3)Market Participants:

Companies and investors should use hybrid model fore-
casts to plan trading strategies, especially during volatile
periods.

6.3 Future Directions

(1)Model Diversification: Future research could integrate
models like LSTM into GARCH frameworks.
(2)Macroeconomic Variables: Incorporating global eco-
nomic and energy market data may improve explanatory
power.

(3)Cross-Market Comparison: Comparing carbon markets
across countries may reveal shared or divergent volatility
mechanisms.
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Appendix

1.Data Cleaning

(1)Outlier detection

data <- read.csv(“cleaned data.csv”)
detect_outliers <- function(x) {

Q1 <- quantile(x, 0.25, na.rm = TRUE)
Q3 <- quantile(x, 0.75, na.rm = TRUE)

IQR <-Q3 - Q1

x[x <(QI1 - L.5*IQR) | x> (Q3 + 1.5*IQR)] <- NA
return(x)

}

data$eu_price <- detect_outliers(data$eu_price)
data$china_price <- detect_outliers(data$china_price)
write.csv(data, “cleaned data no_outliers.csv”, row.
names = FALSE)

(2)Stationary Test

install.packages(“tseries™)

library(tseries)

returns <- diff(log(data$eu price)) * 100

adf test <- adf.test(na.omit(returns))

print(adf test)

2.Model Construction and Testing

(1)Construction of GARCH Model
install.packages(“rugarch”)

library(rugarch)

garch_spec <- ugarchspec(

variance.model = list(model = “sGARCH”, garchOrder =
e(1,1),

mean.model = list(armaOrder = ¢(0,0))

)

garch_fit <- ugarchfit(spec = garch_spec, data = returns)
conditional volatility <- sigma(garch_fit)
(2)Construction of ANN Model
install.packages(‘“neuralnet™)

library(neuralnet)

data_ann <- data.frame(

returns_lagl = lag(returns, 1),

policy effect = data$policy effect,

oil_price = data$oil price

)

data_ann <- na.omit(data_ann)

set.seed(123)

train_idx <- sample(1l:nrow(data_ann), 0.8 * nrow(data
ann))



train <- data_ann[train_idx, ]

test <- data_ann[-train_idx, ]

3.Model Prediction and Evaluation

ann_model <- neuralnet(

returns ~ returns_lagl + policy _effect + oil_price,
data = train,

hidden = ¢(64, 32),

linear.output = TRUE,

act.fct = “logistic”

)

Construction of GARCH-ANN Hybrid Model
data_hybrid <- data.frame(

data_ann,

conditional_volatility = conditional volatility[1:nrow(da-
ta_ann)]

)

ann_hybrid <- neuralnet(

returns ~ returns_lagl + policy effect + oil_price + condi-
tional volatility,

data = data_hybrid[train_idx, ],

hidden = ¢(64, 32),

linear.output = TRUE,
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act.fct = “logistic”

)

predict_ann <- function(model, data) {
prediction <- compute(model, data[, -1])
return(prediction$net.result)

H

pred_garch <- fitted(garch_fit)

pred_ann <- predict_ann(ann_model, test)
pred_hybrid <- predict_ann(ann_hybrid, test)
library(Metrics)

mse_garch <- mse(test$returns, pred garch)
mae_garch <- mae(test$returns, pred garch)
mse_ann <- mse(test$returns, pred_ann)
mae_ann <- mae(test$returns, pred ann)
mse_hybrid <- mse(test$returns, pred hybrid)
mae_hybrid <- mae(test$returns, pred_hybrid)
results <- data.frame(

Model = ¢(“GARCH”, “ANN”, “GARCH-ANN"),
MSE = c¢(mse_garch, mse ann, mse_hybrid),
MAE = c(mae_garch, mae ann, mae hybrid)
)

print(results)





