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abstract:
Overseas studies have shown that complex neural network 
models perform better in enterprise performance prediction 
and can accurately capture the complex relationship of data, 
but there are long training time, overfitting risk, and limited 
practical application. Research has gradually focused on 
balancing model complexity and practicality, while the 
domestic discussion of the difference in the impact of the 
two is less, mostly focusing on application validation. In 
specific industries (e.g., traditional manufacturing), simple 
models have met the demand due to their high efficiency 
and transparency; however, in high-dimensional and large-
scale data scenarios (e.g., science and technology finance), 
complex models have significant advantages. In the future, 
it is necessary to combine the industry characteristics and 
data scale, deepen the model applicability research, and 
build a differentiated application framework to optimize 
the enterprise technology selection and resource allocation 
efficiency.
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1. introduction
Enterprise performance is a key indicator to measure 
the survival and development of an enterprise, and 
plays a vital role in assessing the operation of an 
enterprise and enhancing its competitiveness. As a 
powerful predictive and analytical tool, neural net-
work models have been widely used in the field of 
enterprise performance assessment. By comparing 
the performance of simple and complex neural net-
work models in terms of their impact on enterprise 

performance, it can help enterprises to choose the 
most suitable model, so as to improve the accuracy 
and practicability of decision-making, optimize the 
allocation of resources, and promote the sustainable 
development of enterprises. This study aims to ex-
plore the advantages and disadvantages of simple and 
complex neural network models in enterprise perfor-
mance prediction, and provide decision-making sug-
gestions with reference value for enterprise practice.
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2. advantages of simple neural net-
work models in enterprises
Due to its simplicity and efficiency, the simple model 
can help some enterprises accelerate the process of per-
formance analysis in specific scenarios, help enterprises 
better understand the forecast demand and improve com-
petitiveness, and have an important impact on the devel-
opment and decision-making of enterprises [1]. For exam-
ple, the linear regression model analyzes the impact of 
promotional activities on the sales of chain stores, and the 
results show that the average daily sales will increase by 
5.1% with each increase of “full-price activities”. Since 
the weights of the model are clear and transparent, the 
management can intuitively adjust the marketing strategy 
to optimize the operational effect.

2.1 Comparability and effectiveness
Simple models have fewer parameters, such as the in-
put and output layers of a single-layer network, which 
makes their calculations and adjustments more accurate 
and avoids “variable anomalies” that may be caused by 
too many parameters in complex models [2]. Comparing 
a single-layer perceptron with logistic regression, for 
example, the specific effect of weights in a linear model 
can be clearly observed, without the need to consider 
the interference of hidden layers or complex structures. 
Simple models usually require only a small number of 
hyperparameters to be adjusted, such as the learning rate 
and regularization coefficients, which makes the experi-
mental design more focused and the experimental results 
more reproducible. When exploring the effect of activa-
tion functions on performance, simple models can directly 
reflect the differences without having to consider complex 
issues such as gradient vanishing, which is common in 
deep networks [3]. When dealing with task scenarios with 
smaller data volumes, lower feature dimensions and linear 
separability, the simple model shows efficiency, while its 
deployment cost is lower and the decision-making process 
is more transparent.

2.2 Generalization ability in limited cases
The reason why the simple model shows stronger gener-
alization ability lies in the good match between its model 
complexity and data size, as well as its effective overfit-
ting suppression mechanism [4]. When the amount of data 
is limited, it is easier for the simple model to satisfy the 
condition of “model capacity ≤ amount of data informa-
tion”, thus avoiding the loss of generalization ability due 
to overfitting noise. For example, in a task with only 100 
samples, the upper bound of the generalization error of 

the single-layer perceptron is significantly lower than that 
of the deep network. This is due to the fact that the sim-
ple model has sparser parameters, fewer parameters, and 
fewer degrees of freedom to be fitted, and is therefore less 
sensitive to noise in the training data. The simple model 
is also more effective in the application of strategies such 
as L2 regularization, due to the lower spatial dimension-
ality of its parameters, which allows the regularization 
constraints to work more directly. When the sample size 
is insufficient (e.g., N < 100), the simple model is able to 
quickly converge to the global optimal solution without 
falling into a local optimum as in the case of the complex 
model, thus reducing the impact of stochasticity. For ex-
ample, in medical image analysis, if there are only tens of 
cases of labeled data for a certain rare disease, the general-
ization performance of a shallow MLP may be better than 
that of a complex model such as ResNet, which reflects 
the stability of the simple model in small data scenarios. 
Simple models rely on global weight updates and are less 
sensitive to local noise (e.g., labeling errors, feature out-
liers, etc.). For example, in the presence of 10% random 
noise in industrial sensor data, the prediction error fluctu-
ation range of the single-layer regression model is more 
than 30% smaller than that of LSTM. These properties 
allow the simple model to exhibit superior generalization 
ability in specific situations.

3. advantages of complex neural net-
work models in enterprises
With sufficient data volume, complex models tend to show 
superior performance, and their accuracy continues to 
improve as the data volume increases. For example, Deep 
Matrix Factorization (DeepMF) improves recommenda-
tion click-through rates by more than 30% when dealing 
with billions of user behavior data. The core advantage 
of complex models is their ability to solve nonlinear and 
high-dimensional problems that are difficult for traditional 
models to cope with, so as to maximize the use of big data 
resources and achieve accurate prediction and automation. 
This is of great strategic significance for the development 
of enterprises.

3.1 Feature extraction and recognition capabili-
ties
Compared to traditional extraction methods, complex 
models can automatically extract key features directly 
from raw data, eliminating many tedious intermediate 
steps. For example, Convolutional Neural Networks 
(CNNs) automatically capture features such as edges, 
textures, and local shapes through convolutional kernels, 

2



Dean&Francis

ZijiE Gu

while Transformer utilizes self-attention to discover se-
mantic associations in text (e.g., recognizing the different 
meanings of “Xiaomi” in the terms of “crop” and “mo-
bile phone brand”) [5]. In addition, the complex model 
can be dynamically adjusted according to the task goal, 
and extract task-oriented features from dynamic features. 
Through layer-by-layer nonlinear transformation, the com-
plex model can gradually abstract features from low-order 
to high-order to form a multi-granularity representation. 
Taking image processing as an example, the example 
layers are as follows: shallow - edges, corner points; me-
dium - local shapes (e.g. wheels, windows); deep - global 
semantics (e.g. “car”, ‘building’). Complex models are 
able to approximate arbitrarily complex functions through 
multi-layer nonlinear transformations, thus solving pattern 
problems that cannot be handled by linear models. For 
example, the different-or (XOR) problem, which cannot 
be solved by a single-layer perceptron, can be easily fitted 
by a two-layer network. In addition, CNN achieves trans-
lation invariance through convolutional kernel parame-
ter sharing, while Transformer handles sequence order 
through position encoding [6]. These properties make com-
plex models perform particularly well when dealing with 
high-dimensional, unstructured data and complex pattern 
recognition tasks.

3.2 Model capacity under big data
Complex models show significant capacity advantages 
in big data processing, which is mainly attributed to their 
deep nonlinear structure and large parameter space, en-
abling them to efficiently fit and generalize high-dimen-
sional and nonlinear data distributions. Model Capacity 
refers to the ability of a model to learn complex functional 
relationships. Complex models (e.g., Deep Neural Net-
works, Transformer, etc.) are able to capture multi-granu-
larity information ranging from microscopic local features 
to macroscopic global semantics through the multi-layer 
stacked hidden layer structure and dynamic parameter 
adjustment mechanism [7]. In the big data environment, 
this high-capacity feature forms a virtuous circle with 
the data scale: on the one hand, a large amount of data 
provides sufficient training samples for complex models, 
which effectively mitigates the risk of overfitting, and 
enables the models to explore the parameter space while 
still maintaining a good generalization ability. On the 
other hand, the high capacity of complex models enables 
them to automatically extract and fuse deep features of 
heterogeneous data from multiple sources. For example, 
Convolutional Neural Networks (CNNs) are able to learn 
features such as edges and textures layer by layer from 
high-level image data, and ultimately realize end-to-end 

image classification or target detection without relying on 
manually designed feature engineering [8]. The high-capac-
ity advantage of complex models is mainly reflected in the 
following three aspects: first, it breaks through the tradi-
tional model’s dependence on linearly divisible or low-di-
mensional data, and solves the problem of intelligent pro-
cessing of unstructured data such as images, speech, and 
text [9]; second, through end-to-end learning, it realizes the 
optimization of the decision output from the original data, 
which reduces the manual intervention and the accumula-
tion of errors; lastly, it helps to build scalable intelligent 
systems, e.g., in recommender systems, the Deep Matrix 
Factorization (DeepMF) model continuously improves the 
recommendation effect under massive data by capturing 
the higher-order interactions between users-items.

4. The ison of different degree models 
in enterprise performance data
Simple models (e.g., linear regression, shallow neural net-
works) excel at capturing linear relationships, such as the 
negative correlation between gearing and return on assets 
(ROA). With smaller data volumes and fewer features, 
such models perform consistently, but struggle to effec-
tively model nonlinear effects, such as the threshold effect 
of R&D investment. In contrast, complex models (e.g., 
Long Short-Term Memory Network LSTM, Transform-
er, etc.) are able to capture high-dimensional nonlinear 
relationships, such as industry crossover features. With 
large data volumes, such models have significantly higher 
prediction accuracy, with errors (RMSE) that can be re-
duced by 15-30%. However, complex models are prone 
to overfitting on small sample data. In terms of compu-
tational cost, there are also differences between the two 
types of models: simple models are fast to train (usually 
in seconds) and less expensive to deploy, while complex 
models are more expensive to deploy and require more 
maintenance.

4.1 Effect of simple models on performance 
data
In the test prediction, the RMSE of the simple model on 
the test set was 3.21, which was significantly higher than 
that of the complex model (2.58), but better than that 
of the traditional linear regression (3.8). After multiple 
cross-validations, the standard deviation of prediction 
error of the simple model is 0.4, which is lower than that 
of the complex model (0.7), which indicates that the sim-
ple model has a lower risk of overfitting. By parsing the 
model weights, the key drivers of the simple model on 
firm performance are derived as follows. Meanwhile, the 
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simple model is found to clearly quantify the negative 
impact of financial leverage (gearing) on ROA, which is 
consistent with financial management theory. However, 
the model is weak in capturing non-financial features and 
non-linear relationships (e.g., the threshold effect of R&D 
investment). For example, when the R&D investment 
exceeds hundreds of millions of dollars, the ROA growth 
rate increases, but the simple model is still calculated by 
linear weights, which indicates its inadequacy in dealing 
with nonlinear relationships. In addition, when modeling 
uniformly across industries, the generalization ability of 
the model is weak. These are some of the limitations of 
the simple model.

4.2 impact of complex models on performance 
data
In the same test prediction, the RMSE of the complex 
model on the test set is 2.58, which is 19.6% lower com-
pared to the 3.21 of the simple model, especially in the 
technology and finance industries. By capturing the non-
linear features, it is found that: when the R&D investment 
exceeds 500 million RMB, the ROA growth rate increases 
significantly (showing increasing marginal returns); while 
when the gearing ratio exceeds 65%, the ROA decreases 
sharply (the nonlinear inflection point is revealed). In 
addition, complex models show significant advantages in 
high-dimensional and nonlinear data processing, but at 
the same time rely on a large amount of data and compu-

tational resources. Analyzing the characteristic contribu-
tions of complex models through SHAP (SHapley Addi-
tive exPlanations), the following conclusions are drawn: 
i. In terms of revenue growth rate (average SHAP value 
+1.8), the positive contribution of high-growth enterpris-
es is significant and exponential; ii. In terms of gearing 
(average SHAP value -1.5), the negative impact is sharply 
magnified when it exceeds the critical value (65%) the 
negative effect is sharply amplified; iii. in R&D invest-
ment (average SHAP value +1.2), the marginal benefit of 
R&D investment in the technology industry is nonlinearly 
increasing; iv. in the technology industry (average SHAP 
value +0.9), there is an additional gain to ROA (policy 
dividend + technological barriers). At the same time, the 
complex model also reveals interaction effects that cannot 
be captured by the simple model, such as the synergistic 
gain of “technology industry × high R&D investment”. In 
addition, complex models are more sensitive to extreme 
values, e.g., firms with high gearing ratios (>75%) have 
significantly lower ROA prediction errors. However, the 
implementation of complex models requires a large num-
ber of samples to avoid overfitting and the reliance on 
tools such as SHAP/LIME leads to higher interpretation 
costs, which are some of the limitations of complex mod-
els.

4.3 Comparison of findings between simple and 
complex models on performance data

Table 1 compares the two models and extracts the relevant findings

trade
Revenue 

growth rate 
of (%)

asset-liability ratio 
(%)

R & D invest-
ment (100 

million yuan)

Asset 
scale 

(RMB 
100 

million 
yuan)

ROA(%)
Using simple 
models(0/1)

Using complex 
models(0/1)

science and tech-
nology

15.2 42.3 4.5 65.0 9.1 0 1

manufacture -2.5 68.9 1.2 120.0 -1.8 1 0
finance 22.1 35.0 0.8 80.0 11.5 0 1
retail 5.5 58.0 0.3 15.0 3.2 1 0

science and tech-
nology

28.4 30.5 6.8 200.0 14.7 0 1

manufacture -7.0 72.0 2.1 90.0 -4.5 1 0
finance 3.8 55.0 1.5 45.0 4.0 1 0

science and tech-
nology

18.9 25.0 8.2 150.0 12.3 0 1

retail 9.5 50.0 0.6 25.0 5.5 1 0
manufacture -1.2 65.0 3.0 80.0 -0.5 1 0
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The findings show that complex models are prevalent in 
the Technology and Finance industries, which have high-
er revenue growth rates, higher R&D investments, and 
superior return on assets (ROA). In contrast, the Manu-
facturing and Retail sectors are more likely to use simple 
models, with weaker or less volatile revenue growth and 
generally negative ROA. The tabular data shows that 
R&D investment is significantly higher for companies 
using complex models, suggesting that technology-inten-
sive companies rely more on complex models to process 
high-dimensional data. On the other hand, companies 
using simple models have lower R&D investment, which 
may be related to their relatively traditional business mod-
el.

5. Conclusion
Compared to simple shallow networks, complex neural 
network models (e.g., LSTM) exhibit higher accuracy 
(~20% reduction in RMSE) in predicting business perfor-
mance (e.g., ROA), with particular advantages in high-di-
mensional nonlinear scenarios, such as technology and 
finance. However, complex models are significantly more 
computationally expensive (3x longer training time) and 
less interpretable, often relying on a posteriori tools (e.g., 
SHAP) to parse their decision logic. In contrast, simple 
models perform better in terms of efficiency (training in 
seconds) and interpretability (can be directly analyzed in 
terms of weights), and are more suitable for SMEs with 
limited data or in need of fast business decisions. There-
fore, in practical applications, it is recommended that en-
terprises weigh their choices based on data size, industry 
characteristics and resource conditions - preferring com-
plex models in large-scale complex scenarios, and simple 
models in small-scale or explanatory-driven scenarios, in 
order to achieve the optimal balance between technical 
utility and cost.
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