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Stock Price Forecasting Using Deep
Learning: A Comparative Study of CNN,
LSTM, and Transformer Models with
Feature Engineering Insights

Abstract:

Jiyu Ning Accurate forecasting of stock prices remains a
challenging yet essential task in financial modeling. This

Soith Elinn Uinthyatiy of paper investigates the' effectiveness of deep learning

edlmaliens, s, architectures—convolutional neural networks (CNN), long

Guangdong, 510641, China short-term memory networks (LSTM), anq transformer

202230322062@mail.scut.edu.cn models—for predicting the average stock price over a 30-
day horizon. Historical market data from 12 representative
Hong Kong-listed companies are employed to evaluate
the performance of each model, both with and without the
inclusion of traditional technical indicators (Type 1) and
derived statistical features (Type 2). Results show that the
Transformer model trained on raw price and volume data
achieves superior performance, recording the lowest Root
Mean Square Error (RMSE = 0.3799), Mean Absolute
Error (MAE = 0.2909), and the highest directional
accuracy (51.00%), outperforming other models and
exceeding the random baseline. In contrast, the integration
of technical indicators results in decreased performance,
suggesting potential overfitting or feature redundancy.
The research underscores the effectiveness of attention-
based architectures in financial time series prediction and
emphasizes the importance of cautious feature selection
when incorporating domain-specific indicators. These
findings provide practical guidance for quantitative
analysts and financial data scientists regarding model
architecture choices and feature engineering strategies in
stock forecasting tasks.

Keywords: LSTM, Transformer, CNN, Stock Forecast-
ing, Feature Engineering




Dean&Francis

1 Introduction

Forecasting trends in the financial market remains an im-
portant yet complex area for researchers and industry pro-
fessionals, given its significance for strategic investments
and economic decision-making. In recent years, deep
learning (DL) models have gained considerable popularity
due to their powerful ability in handling intricate temporal
relationships and capturing nonlinear dynamics inherent
in financial datasets.

Bansal et al. explored various DL techniques specifically
for predicting stock movements, underscoring the advan-
tages of these methods in financial forecasting tasks [1].
Additionally, Yang and Wen combined DL approaches
with sentiment analysis, demonstrating notable predictive
improvements for stock market analysis [2]. Moreover, a
combined approach using LSTM and CNN architectures
was proposed by Wang and Li, effectively leveraging the
sequential modeling strengths of LSTM along with CNN’s
capacity to extract local patterns, resulting in enhanced
prediction accuracy [3].

LSTM networks have been widely recognized for their
proficiency in modeling sequential data due to their
unique memory mechanisms. Hochreiter and Schmidhu-
ber initially introduced LSTM networks, which have since
become foundational in handling long-term dependencies
in financial data [4]. Jiang et al. further explored the use
of LSTM specifically in stock market forecasting, demon-
strating its effectiveness in capturing complex temporal
dynamics [5].

Linear regression is a commonly used fundamental ana-
lytical tool in financial forecasting; however, Singh and
Srivastava indicated it typically struggles to effectively
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model the complex and dynamic characteristics of finan-
cial markets [6]. Shaikh et al. carried out a comparative
study examining traditional statistical methods alongside
machine learning techniques, ultimately suggesting that
machine learning methods generally yield better accuracy
and robustness in predicting stock price movements [7].
Additionally, Vaswani et al. proposed the Transformer ar-
chitecture featuring a self-attention mechanism, substan-
tially enhancing the modeling of long-range dependencies
within sequential data [8]. Hu further explored various
deep learning techniques, including the Transformer, em-
phasizing their strong potential for capturing sophisticated
market behaviors in financial prediction tasks [9].

This study contributes to the existing literature by system-
atically evaluating the performance of CNN, LSTM, and
Transformer models specifically within the context of the
Hong Kong stock market, providing insights into their re-
spective strengths, limitations, and optimal usage scenari-
0s.

2 Methodology

2.1 Data Collection and Preprocessing

The paper collects historical daily trading data (2019—
2024) of 12 representative Hong Kong-listed companies
via AkShare, including Close, High, Low, Shares Traded,
and Volume. The data set consists of daily trading records
from 2019 to 2024 for 12 representative Hong Kong
stocks, obtained via the Akshare financial database. Each
record contains the basic K-line indicators: open, high,
low, close, volume, and amount (Table 1).

Table 1. Selected Hong Kong stocks and their industry sectors

Stock code Company name Sector

00700.HK Tencent Holdings Ltd. Technology
03690.HK Meituan Consumer Services / E-commerce
01211.HK BYD Company Limited Automobiles / New Energy
00388.HK Hong Kong Exchanges and Clearing Financial Services
02382.HK Sunny Optical Technology Technology / Optical Equipment
02318.HK Ping An Insurance Insurance

00981.HK Semiconductor Manufacturing Int’1 Corp. Semiconductors
06060.HK CITIC Securities Financial Services / Brokerage
06823.HK EC Healthcare Healthcare Services
01044.HK Hengan International Group Consumer Goods / Hygiene
01093.HK CSPC Pharmaceutical Group Pharmaceuticals
02020.HK Anta Sports Products Limited Consumer Goods / Apparel

To facilitate model training, all close price series are in-
dependently standardized using z-score normalization to
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eliminate scale differences between stocks. The standard-
ized trends are visualized in Fig. 1, where each line rep-
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resents one stock.

Standardized Close Price Trends of 12 HK Stocks
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Fig. 1. Standardized Close Price Trends of 12 HK Stocks (Photo/Picture credit: Original).

From Fig. 1, Standardized Close Price Trends of 12 HK
Stocks, the author observes that while all stocks fluctu-
ate around zero (due to standardization), their volatility
and local patterns differ significantly. Some exhibit sharp
spikes (indicative of outlier movements), while others are
relatively stable. This underscores the heterogeneity in
price dynamics between companies, which deep learning
models must take into account.

To enhance learning, the author computes two groups
of derived features. The first group consists of technical
indicators, commonly used in financial analysis: Type 1
features (technical indicators):

Moving Average (MA) over n days smooths the price
trend by averaging the past n closing prices:

MAAt)%ZP(f—i) (M

where P(r) is the price at time t. Rolling Standard Devia-

tion (STD) captures recent volatility:

STD, (t):\/%i}:(P(t—i)—MA,l(t))2 2)

It measures the dispersion of prices around the moving
average. Relative Strength Index (RSI) is a momentum
oscillator:
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EMA (1)
ponential moving averages of gains and losses, respective-

ly. On-Balance Volume (OBV) reflects cumulative volume
flow:

Where RS(t)= and EMA*, EMA™ are the ex-

OBV(r-1)+V (1), ifP(t)>P(t—1)
OBV(1)={OBV(-1)-V (1), ifP(t)<P(-1) (4)
OBV(t-1), otherwise

Where V(t) is the trading volume at time ttt. Moving Av-
erage Convergence Divergence (MACD) is calculated as:
MACD(t) = EMA,, (1) — EMA, (1) 5
With the signal line defined as Signal(1)= EMAy,(MACD(z)) ,
and histogram: Hist(1)= MACD(t)—Signal(t) . Here,
EM4, denotes the exponential moving average over k pe-
riods.
OBV(t—1)+V (1), ifP(1)>P(t—1)
OBV(1)=10OBV(t-1)-V(t), ifP(t)<P(t-1) (6)
OBV(t-1), otherwise

Type 2 features (statistical descriptors over a 30-day win-
dow): To capture the statistical characteristics of stock
prices, the following features are computed over a fixed-

size window of w=30days: Trend Slope: The slope £,

from linear regression over the price series is used to

quantify the directional trend. It is calculated by fitting
¥ ¥
a line to the past www prices, where x and P are the

means of the time indices and prices, respectively.

Mean and Standard Deviation: The average price s(r)

and volatility o () over the window are given by:

1 w1 ] 1 w1 )
u(t)==3 P(t-i).o(t)= \/— (P-1)- () (7)
Wizo Wizo
where P(t) denotes the price at time t.
Maximum and Minimum Prices: The highest and lowest
prices within the window are:
P (t):maxP(t—z),Pmm(t)zOngl_ir‘sz(t—l) (8)

max O<i<w
Amplitude (Range): Defined as the price range in the win-
dow:

A(t) = Py (1) = P (1) )



Skewness and Kurtosis: These higher-order moments cap-
ture the asymmetry and tail behavior of the price distribu-
tion:

Smw@—lZ{ﬂtﬂ4ﬂlemok

w o\t
4 (1) (10)
li[P(t—z) ,u( )j
w i=0 )
All features are standardized per stock using:
X =K (11)
o

This standardization is applied after feature computation
to preserve temporal dynamics while ensuring compara-
bility across stocks.

2.2 LSTM Model

The LSTM architecture is designed to process sequential
data by preserving and updating memory states over time.
It effectively learns long-distance temporal relationships
while reducing issues such as the vanishing gradient,
which often hinder standard recurrent networks. Through
sequential processing of historical stock data, LSTM
selectively retains important past signals and filters out
noise, supporting the learning of time-based patterns
essential for prediction. Its strength lies in modeling non-
linear and intricate temporal behaviors within financial
datasets, making it a robust candidate for stock market
forecasting applications.

2.3 CNN Model

CNNs extract local temporal patterns from time-series
data by applying convolution operations across input
sequences, enabling efficient feature learning without
relying on sequential processing. Through stacked con-
volution and pooling layers, CNNs summarize short-term
dependencies and highlight significant local trends in
historical stock data. Their primary advantage lies in fast
training, efficient parallel computation, and effective cap-
ture of short-term patterns, making them suitable for tasks
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where recent fluctuations carry critical predictive informa-
tion.

2.4 Transformer Model

Originally developed for handling sequential data, the
Transformer architecture has since been adapted for
time-series analysis, primarily due to its strength in mod-
eling distant temporal relationships through self-attention
mechanisms. By dynamically weighting different time
steps, the model can extract meaningful temporal patterns
from the entire historical dataset without relying on re-
current structures. Its main advantages include parallel
processing and the ability to capture global dependencies,
making it especially suitable for tasks involving complex
temporal sequences where long-term historical trends are
essential for precise prediction. Transformer+Typel: Uses
technical indicators. Transformer+Type2: Uses statistical
pattern descriptors [10].

3 Results

This section visualizes and interprets the training dynam-
ics and prediction performance of the proposed models,
including LSTM, CNN, and Transformer variants. To
evaluate model performance on stock trend forecasting,
three key metrics are reported: RMSE, MAE, and direc-
tional accuracy (trend prediction accuracy). The summary
of results is presented in Table 2.

Among the tested models, the Transformer, when applied
using only raw input features without any additional pre-
processing or engineered indicators, produced the most fa-
vorable outcomes. It recorded the lowest root mean square
error (RMSE) and mean absolute error (MAE), while also
reaching a directional accuracy of 51.00

The LSTM model performed reasonably well and showed
a level of stability across its predictions. However, when
measured against the Transformer, it fell short by a small
margin. This gap may be attributed to the way LSTM han-
dles data in a step-by-step sequence, which could limit its
ability to recognize patterns spread over longer time inter-
vals.

Table 2. Performance metrics

Model RMSE MAE Direction Acc (%)
CNN 0.4538 0.3432 50.03
LST™M 0.4016 0.2940 50.86
Transformer 0.3799 0.2909 51.00
Transformer + Typel 1.2234 0.9952 49.87
Transformer + Type2 0.7007 0.5321 50.20
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3.1 Training and Testing Loss Curves
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(d)Typel-Transformer Training and Testing loss Curve

Fig. 2. Training and testing curve (Photo/Picture credit: Original).

Fig. 2 illustrates the curves representing the MSE loss
values throughout the training and testing phases. The
training loss is represented by the blue line, while the test-
ing loss is shown by the orange line. A well-generalizing
model should exhibit convergence of both curves with

minimal overfitting, whereas divergence suggests poor
generalization. Notably, the LSTM and Transformer mod-
els (top-right and middle-left, respectively) demonstrate

relatively stable convergence.



3.2 Prediction Performance and Classification
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Visualization

Istm Prediction vs True (Sorted) with Trend Classification Accuracy

34— True (sorted)
Predicted
Prediction Error Band

z
8
£
g

[ 1000 3000 4000

000
sorted sample Index

(b)LSTM

Typel-Transformer Prediction vs True (Sorted with Error & Classification Accuracy)

o 1000 3000 4000

(d)Type-1 Transformer

Fig. 3. Prediction Curve of 5 Models (Photo/Picture credit: Original).

Fig. 3 presents the sorted prediction results for each mod-
el, overlaid with the true (ground truth) target curve. The
y-axis represents the normalized 30-day average target
(i.e., the prediction target), while the x-axis denotes the
sorted test sample index.

4 Conclusion

This research provides a comparative analysis among
three deep learning architectures—CNN, LSTM, and
Transformer—evaluating their capabilities in forecasting
stock trends within the Hong Kong market. Experimental
outcomes demonstrate superior predictive effectiveness of
the Transformer architecture when utilizing basic market

data, achieving notably low forecasting errors (RMSE =
0.3799, MAE = 0.2909) alongside improved accuracy in
predicting market directions (51.00%). Conversely, CNN
and LSTM architectures showed comparatively inferior
predictive results.

Analyzing the strengths and weaknesses of each model,
the Transformer’s self-attention mechanism enables it to
effectively capture long-range dependencies and global
patterns, which is particularly advantageous in sequential
prediction tasks. CNN models are effective at capturing
local patterns but typically lack explicit mechanisms for
modeling long-range temporal dependencies. LSTM mod-
els, known for their gated mechanisms, excel in capturing
temporal dependencies and have demonstrated high accu-
racy in short-term stock price predictions.
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Regarding model optimization strategies, this study found
that directly incorporating traditional technical indicators
(Type 1) or statistical features (Type 2) did not enhance
performance and instead introduced redundancy or noise,
negatively affecting model accuracy. This highlights the
importance of carefully selecting relevant features to en-
hance predictive performance.

This study also has limitations in its experimental design.
The dataset used was limited to 12 companies listed in the
Hong Kong market, potentially restricting the generaliz-
ability of the findings. Additionally, external economic
and non-economic factors, recognized as critical influ-
encers on stock prices, were not extensively explored,
although these factors significantly impact real-world
market conditions.

Future research could expand dataset scale and market
diversity, integrate broader economic and non-econom-
ic indicators, and explore hybrid model architectures.
Combining different neural network architectures, such
as hybrid CNN-LSTM models, shows promise for further
improving prediction accuracy. Furthermore, investigating
flexible time windows and diverse forecasting tasks could
contribute to developing more robust and generalizable
stock market prediction models.

In conclusion, this study confirms the superior perfor-
mance of the Transformer model in stock trend prediction
and highlights the importance of careful feature selection
and model architecture design, offering valuable guidance
for developing and applying future financial forecasting
models.
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