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Abstract:

Scam message detection remains a persistent challenge,
particularly with the rise of adversarial content crafted
to bypass traditional filters. This study compares the
effectiveness of conventional classifiers—K-Nearest
Neighbors (KNN), Logistic Regression, and Random
Forest—using frozen BERT embeddings, against a fully
fine-tuned BERT model trained end-to-end. The evaluation
is conducted on a labeled dataset containing regular
scam messages, adversarial scam messages generated by
large language models, and legitimate non-scam texts.
Among the tested models, the fine-tuned BERT achieves
the highest multiclass classification accuracy of 95.83%
and binary classification accuracy of 96.67%. Logistic
regression also reaches 96.67% binary accuracy, offering
a lightweight and computationally efficient alternative.
Visualizations of attention matrices reveal that fine-
tuning improves model interpretability by concentrating
attention on task-relevant tokens in deeper transformer
layers. These findings suggest a practical trade-off between
model complexity, interpretability, and performance.
While fine-tuning offers superior accuracy and insight into
model behavior, traditional methods remain valuable in
resource-constrained or time-sensitive scenarios. This work
provides empirical evidence and visual analysis to guide
the selection of text classification strategies in adversarial
environments, contributing to more robust and explainable
approaches for real-world scam detection.
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1 Introduction

Scam messages continue to pose a significant threat to
digital communication platforms, especially as malicious
actors increasingly employ adversarial strategies to cir-
cumvent detection systems. These adversarial texts are
intentionally designed to resemble legitimate messages
while subtly manipulating linguistic cues, thereby evading
rule-based or traditional statistical filters [1]. To address
this evolving challenge, more resilient and adaptable de-
tection frameworks have become essential.

The emergence of large-scale pre-trained language models
such as BERT has markedly advanced text classification
performance across various domains [2]. However, de-
spite their empirical success, these models are still suscep-
tible to adversarial inputs. Research has shown that minor
perturbations in input sequences can lead to substantial
prediction errors, raising critical concerns about model
reliability in real-world scenarios [3]. In response, several
studies have explored adversarial training techniques and
contrastive learning to enhance robustness, though often
with compromises in training efficiency and interpretabili-
ty [4].

To examine this trade-off, the present study compares
the performance of traditional classifiers built on frozen
BERT embeddings with that of an end-to-end fine-tuned
BERT model. The objective is to determine whether
fine-tuning leads to significant gains in classification ac-
curacy and model interpretability under adversarial threat,

or whether lighter, more resource-efficient classifiers can
provide comparable results when applied in constrained
environments.

2 Dataset

The dataset used in this study is the Adversarial Scam
Message Dataset, originally introduced by Chang et al.
and publicly available on Kaggle [5]. It comprises approx-
imately 1,200 manually annotated text samples, catego-
rized into three distinct classes: regular scam messages
(n = 530), adversarial scam messages generated by large
language models (n = 126), and legitimate non-scam
messages (n = 544). Each sample is labeled as 0 (scam),
1 (adversarial scam), or -1 (non-scam), reflecting a ter-
nary classification scheme. The dataset spans a variety of
scam typologies, including phishing attempts, recruitment
fraud, and financial scams.

To ensure compatibility with BERT-based models, all text
messages were tokenized using the bert-base-uncased
tokenizer. Both truncation and padding were applied to
standardize input length, with a maximum token limit of
512. As illustrated in Fig. 1, the majority of the messages
fall well below this threshold—most under 200 tokens—
ensuring that no substantial truncation affects the semantic
content of the data. This preprocessing pipeline preserves
the integrity of the message structure while enabling effi-
cient batch processing during training.
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Fig. 1. Distribution of token lengths in the training set (Photo/Picture credit: Original).

This preprocessing pipeline and initial data analysis pro-
vided a reliable foundation for the subsequent experiments
involving both probing with frozen BERT representations
and full fine-tuning of the pre-trained model.

3 Methods

This study adopts the pre-trained bert-base-uncased model
from the Hugging Face Transformers library as the foun-
dational encoder for all experiments. The model follows



the standard BERT architecture, consisting of 12 trans-
former encoder layers with 12 self-attention heads each
and a hidden size of 768, resulting in approximately 110
million parameters. Tokenization is handled by the built-
in WordPiece tokenizer, which supports a vocabulary of
30,522 tokens and incorporates positional embeddings to
capture word order.

To assess the effectiveness of frozen BERT embeddings,
sentence-level representations are derived from the final
hidden layer using four widely adopted strategies: the
embedding of the special classification token at the begin-
ning of the sequence, the embedding of the first token in
the input, the embedding of the final non-padding token,
and the average of all non-padding token embeddings.
These vector representations are then fed into three clas-
sical classifiers. K-Nearest Neighbors (KNN) is evaluated
across various values of K to determine the optimal neigh-
borhood size; Logistic Regression is implemented with L2
regularization and a softmax output layer for multiclasses
prediction; and Random Forest is configured with 100
trees using default hyperparameters. For each model, the
configuration yielding the highest validation accuracy is
selected for final evaluation.

For comparison with these frozen embedding approaches,
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an end-to-end fine-tuning strategy is employed. A linear
classification head is added on top of the BERT encoder,
and the entire model is optimized using the AdamW op-
timizer with a learning rate of 5x1077. Training proceeds
for a maximum of ten epochs, with 10% of the training set
reserved for validation. Early stopping is applied, and the
final model is selected based on the epoch that yields the
highest validation accuracy.

4 Results

4.1 Multiclass Accuracy and F1 Score

Fig. 2 compares both accuracy and F1 score for all models
on the multiclass classification task. Logistic regression
achieved the highest accuracy of 96.67%, followed close-
ly by fine-tuned BERT at 95.83%. In terms of F1 score,
logistic regression slightly outperformed BERT, indicating
more balanced performance across classes. KNN exhibit-
ed the lowest performance overall, although it still main-

tained over 90% in both metrics.
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Fig. 2. Multiclass test performance comparison showing both accuracy and F1 score for KNN,
Logistic Regression, Random Forest, and fine-tuned BERT (Photo/Picture credit: Original).

4.2 Binary Accuracy and F1 Score

In the binary setting, scam messages (both regular and
adversarial) are grouped and compared against non-scam
messages. As shown in Fig. 3, all models achieved high-
er binary accuracy than in the multiclass classification
setting. Logistic regression and fine-tuned BERT both
reached 96.67% in binary accuracy, while random forest
and KNN achieved 95.00% and 92.50%, respectively. In

terms of binary F1 score, logistic regression slightly out-
performed BERT (97.12% vs. 97.10%), indicating strong
performance in balancing precision and recall. KNN
yielded a lower F1 score of 93.33%, while random forest
reached 95.62%. Overall, logistic regression and BERT
demonstrated the most consistent results across both met-
rics.
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Fig. 3. Comparison of binary classification performance (0 vs Non-0) across models, evaluated
by both test accuracy and F1 score (Photo/Picture credit: Original).

4.3 KNN Hyperparameter Search of K in the KNN classifier. The best performance was
Table 1 shows the validation accuracy for different values ~ achieved at K =15 with 97.92% validation accuracy,

which was then used for the final testing.

Table 1. Validation Accuracy for Different K in KNN and Logistic Regression

Model Validation Accuracy
KNN (K = 1) 92.71%
KNN (K = 5) 96.88%
KNN (K = 10) 96.88%
KNN (K = 15) 97.92%
KNN (K = 20) 95.83%
KNN (K =25) 94.79%
Logistic Regression 96.67%
4.4 Fine-Tuning Training Curve shown in Fig. 4, the validation accuracy improved steadi-

ly and peaked at Epoch 9 (98.96%), after which it slightly
decreased. We therefore selected the checkpoint from Ep-
och 9 for final testing.

After fine-tuned the BERT model for up to 10 epochs and
monitored validation accuracy to prevent overfitting. As
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Fine-tuning Validation Accuracy
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Fig. 4. Validation accuracy during BERT fine-tuning training (Photo/Picture credit: Original).

4.5 Attention Matrix

To enhance the interpretability of the fine-tuned BERT
model, attention matrices from intermediate transformer
layers were visualized for both correctly and incorrectly
classified examples. As illustrated in Figs. 5 and 6, suc-
cessful classifications typically exhibit sharp, localized
attention distributions centered on semantically salient
tokens such as “bonus,” “selected,” and “interview,”
particularly in the fifth transformer layer. In contrast, mis-
classified messages tend to produce diffuse or misaligned
attention patterns, often focusing on irrelevant parts of the
input. These observations suggest that the model’s ability

to align attention with task-relevant linguistic cues plays a
critical role in achieving robust scam detection.

This phenomenon aligns with recent findings in trans-
former interpretability research. For instance, Chefer, Gur,
and Wolf emphasize the role of layer-wise hierarchical
attention in tracing decision pathways through transform-
er architectures [6]. Similarly, Wu et al. demonstrate that
attention alignment with domain-specific features enhanc-
es resilience against adversarial perturbations [7]. While
some scholars argue that attention maps should not be
considered definitive explanations, they remain a useful
qualitative diagnostic tool for assessing model behavior
and focus during inference [8].
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Fig. 5. Attention matrix from layer S for a misclassified scam message. Attention is more
diffuse and misaligned (Photo/Picture credit: Original).
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Fig. 6. Attention matrix from layer 5 for a correctly classified scam message. Attention focuses
on key scam-related tokens (Photo/Picture credit: Original).

5 Discussion

This study evaluated the comparative effectiveness of tra-
ditional classifiers based on frozen BERT embeddings—
namely K-Nearest Neighbors (KNN), Logistic Regression,
and Random Forest—and a fully fine-tuned BERT model,
using a real-world adversarial scam detection dataset. The
results consistently demonstrate that the fine-tuned BERT
model outperforms conventional methods in both multi-
class and binary classification settings, especially in terms
of overall accuracy and F1 score.

Visualization of the attention matrices further supports the
model’s interpretability advantages. Correctly predicted
scam messages exhibited highly focused attention on se-
mantically significant tokens such as “bonus” and “inter-
view,” particularly in deeper layers of the transformer. In
contrast, incorrectly classified messages often displayed
diffuse or misaligned attention, suggesting that alignment
between model attention and task-relevant linguistic fea-
tures is essential for reliable predictions [6, 7].

Despite these strengths, fine-tuning requires substantial
computational resources and larger labeled datasets. This
limitation may hinder its deployment in production en-
vironments where resources are constrained. In contrast,
traditional classifiers using frozen BERT embeddings can
be trained and deployed with much lower overhead, mak-
ing them suitable for real-time systems and small-scale
applications [9]. These trade-offs between accuracy, in-
terpretability, and efficiency reflect broader trends in NLP
system design and deployment [10].

The findings also align with recent work advocating for
hybrid approaches that combine fine-tuning with probing
strategies or selective layer freezing to achieve robust yet
efficient models [5]. Future research could explore inte-
grating adversarial training or contrastive objectives with
lightweight classifiers to improve performance without
sacrificing interpretability or resource efficiency.

6 Conclusion

This paper presents a comparative analysis of several clas-
sification approaches for scam message detection in ad-
versarial settings. Fine-tuned BERT models demonstrate
superior accuracy and interpretability, particularly through
attention-based visualization techniques. However, tradi-
tional classifiers using frozen embeddings remain valuable
in resource-limited scenarios, offering competitive perfor-
mance with significantly lower computational cost.
Overall, the findings underscore the importance of select-
ing appropriate strategies based on application constraints.
While fine-tuning enables richer modeling of language
nuances, simple models still hold promise for scalable,
explainable, and cost-effective deployment. Future efforts
may benefit from building hybrid frameworks that balance
performance with interpretability and efficiency, especial-
ly as adversarial text generation techniques become more
prevalent.
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