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Credit Card Default Prediction with
Machine Learning: A Benchmarking
Study on Imbalance Handling and Model
Interpretability

Abstract:

Shuangyi Liu Credit card default risk prediction is crucial for financial
institutions to mitigate potential losses and ensure
regulatory compliance. This paper addresses the challenge
of imbalanced data and model interpretability in predicting
default using the University of California, Irvine (UCI)
Credit Card dataset. Experiments were conducted on
a dataset of 30,000 clients, and feature engineering
was applied to create a 33-dimensional space through
logarithmic transformations and ratio feature construction.
Logistic regression (LR), random forest (RF), and eXtreme
Gradient Boosting (XGBoost) models were trained using
stratified five-fold cross-validation and the Synthetic
Minority Over-sampling Technique (SMOTE) to address
class imbalance, and were evaluated with accuracy, recall,
and area under the receiver operating characteristic curve
(ROC-AUC). On a held-out 20 % test set, LR achieved an
accuracy of 0.7896, a recall of 0.2266, and an ROC-AUC
of 0.7255; RF achieved an accuracy of 0.7861, a recall of
0.5156, and an ROC-AUC of 0.7568; XGBoost achieved
an accuracy of 0.8174, a recall of 0.5078, and an ROC-
AUC of 0.7611. Shapley additive explanations (SHAP)
analysis identified recent payment status, first-month bill
amount, and payment-to-bill ratio as key predictors, thereby
enhancing interpretability and supporting transparent
model evaluation for financial risk management.
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1 Introduction

Credit card default prediction is a cornerstone of risk
management in the banking sector [1]. In cost-sensitive
scenarios such as default classification, misclassifying
a defaulter can incur an expected loss equivalent to er-
roneously classifying ten to fifteen non-defaulters [2,
3]. Chawla et al. demonstrated that combining the Syn-
thetic Minority Over-sampling Technique (SMOTE)
with under-sampling improved classifier performance in
receiver operating characteristic (ROC) space compared
to under-sampling alone [4]. Batista et al. confirmed that
SMOTE-based approaches consistently outperform pure
under-sampling methods across thirteen UCI benchmark
datasets [5]. Model interpretability has been advanced
through Shapley additive explanations (SHAP) to increase
transparency in risk assessment [2]. Recent empirical
studies highlight the comparative performance of statisti-
cal and machine-learning methods for credit scoring under
imbalanced conditions, and systematic literature reviews
underscore the critical importance of explainable Al tech-
niques in financial risk management [6, 7].

Therefore, this paper investigates logistic regression (LR),
random forest (RF), and eXtreme Gradient Boosting (XG-
Boost) within a unified stratified five-fold cross-validation
and SMOTE sampling framework on a 33-dimensional
feature set derived from the UCI Credit Card dataset, with
the objective of establishing a comprehensive benchmark-
ing framework for imbalanced learning in financial risk
management.

2 Data Preprocessing

The data originate from the UCI Machine Learning Re-
pository’s “Default of Credit Card Clients” dataset, which
comprises 30000 observations and 23 original features,
including demographic variables such as SEX, EDUCA-
TION, MARRIAGE and AGE, and six months of billing
and payment history, along with a binary indicator of
default in the subsequent month [6]. The default rate is
0.2212, yielding a highly imbalanced class distribution
that necessitates imbalance-handling strategies. An audit
of the raw data revealed no missing values, and outlier
values in continuous predictors were identified using the
1.5000% interquartile range rule and retained to preserve
genuine credit-risk behaviour. Records were randomly
partitioned into a training set (0.8000 of samples, n =
24000) and a held-out test set (0.2000 of samples, n =
6000) via stratified sampling to maintain the original de-
fault versus non-default ratio.

Continuous predictors were standardised to zero mean
and unit variance using Scikit-learn’s StandardScaler,
which was fitted on each training fold and applied to both
training and test sets without refitting, and categorical
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variables were encoded using Scikit-learn’s OneHotEn-
coder to avoid ordinal assumptions. Feature engineering
expanded the predictor space to 33 dimensions through
ten derived features: six month-specific payment-to-bill
ratios defined as: To characterise monthly repayment
behaviour, a feature was defined as the proportion of the
amount paid to the billed amount in each month, so that
larger proportions reflect stronger repayment patterns.
Additional derived features include the three-month av-
erage growth in billed amounts, the overall credit usage
relative to the credit limit, the total count of late payments
over six months, and the maximum severity of payment
delays. These ten engineered variables expanded the pre-
dictor set from twenty-three to thirty-three dimensions.
This is to capture monthly repayment behaviour trends, a
three-month rolling average bill growth rate to quantify
spending acceleration, an average credit utilisation ratio
computed as the mean billing amount divided by credit
limit to reflect exposure, a six-month delinquency count
summing the number of late payments, and maximum
delinquency severity capturing the highest repayment de-
lay. To mitigate the class imbalance at the data level, we
apply SMOTE for oversampling of the minority class and
random undersampling of the majority class. For example,
Tan et al. introduced Tab-Attention, a self-attention-based
stacked generalization approach that enhances minori-
ty-class detection in credit-default scenarios [8]. Zhang at
al. demonstrated that integrating SMOTE with LightGBM
further outperforms traditional resampling coupled with
ensemble strategies [9].

3 Modeling Techniques

In this study, three classification algorithms, LR, RF, and
XGBoost (XGB), were evaluated within a unified sam-
pling and preprocessing framework. To mitigate the class
imbalance caused by the 22% default rate, we applied
two widely used techniques to each model: the synthetic
minority oversampling technique (SMOTE), which is
used to generate synthetic minority samples, and random
undersampling, which reduces the number of majority
class instances [4, 5]. Scikit-Learn’s Pipeline API chains
sampling, standardization (StandardScaler), and one-hot
encoding (OneHotEncoder), ensuring that all transforma-
tions occur strictly within each training fold and prevent-
ing data leakage.

3.1 Cross-Validation and Hyperparameter Tun-
ing

A stratified five-fold cross-validation scheme was em-
ployed via Scikit-learn’s StratifiedKFold class to preserve
the default-to-non-default ratio in each fold. Hyperpa-
rameter search was conducted using Scikit-learn’s Grid-
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SearchCV (Grid Search with Cross-Validation), with LR
optimized for mean area under the receiver operating
characteristic curve (ROC-AUC) to capture overall dis-
criminative power, and RF and eXtreme Gradient Boost-
ing (XGBoost) optimized for mean recall to prioritise the
identification of defaulters.

32LR

LR serves as the transparent linear baseline. An L2-pe-
nalised LR model (solver=liblinear) is trained with class_
weight="balanced’ to counteract class skew. The regu-
larisation strength C is tuned over {0.01, 0.1, 1, 10}, and
the best model is that which maximises ROC-AUC under
cross-validation. The resulting feature coefficients directly
quantify each predictor’s influence on default probability.

3.3 RF

RF constructs an ensemble of decision trees by training
each tree on a bootstrap sample of the data and selecting a
random subset of features at each split, thereby capturing
nonlinear relationships and feature interactions. A grid of
candidate values for the number of trees, the maximum
depth of each tree, the minimum number of observations
per leaf, and the fraction of features considered at each
split was evaluated, with higher emphasis placed on de-
fault cases during training. Hyperparameters were chosen
to maximise recall, ensuring that the model is especially
sensitive to defaulters. RF offers built-in resistance to
overfitting, automatic estimation of feature importance,
and robust performance on high-dimensional, correlated
data.

3.4 XGBoost

XGBoost sequentially fits decision trees to the residual
errors of prior models, gradually improving predictive
accuracy. To address the scarce occurrence of defaults,

misclassification of defaulters was penalised more heavily
in proportion to their rarity. The number of boosting itera-
tions, maximum tree complexity, learning rate, and subsa-
mpling ratios for both observations and features were op-
timised with recall as the criterion. This approach delivers
high predictive power, efficient handling of sparse inputs,
and built-in regularisation to control model complexity
and enhance generalisation. In addition, Mushava and
Murray [8] extended XGBoost with a generalized extreme
value link function and a modified focal loss, significantly
enhancing its sensitivity to rare default events in highly
imbalanced credit-scoring datasets.

4 Results and Discussion

4.1 Performance on the Held-out Test Set

Table 1 and Fig. 1 summarise each classifier’s perfor-
mance on the held-out 0.2000 test set in terms of accura-
cy, recall, and area under the receiver operating character-
istic curve (ROC-AUC). RF employs the hyperparameter
configuration optimised under the Synthetic Minority
Over-sampling Technique to mitigate class imbalance,
while XGBoost applies an inverse-frequency-based
weight adjustment for the default class to emphasise mi-
nority instances. Table 1 presents the precise values for
each metric, and Fig. 1 uses a bar chart to visualise com-
parative differences across the three models.

LR achieves the highest recall (0.6641), indicating strong
sensitivity to defaulters. RF attains the highest ROC-
AUC (0.7547), reflecting superior overall discrimination.
XGBoost strikes a balance with recall = 0.6094 and ROC-
AUC =0.7524.

Table 1. Model performance on 20% independent test set.

Model Accuracy Recall ROC-AUC
LR 0.7530 0.6641 0.7254
RF (SMOTE) 0.7791 0.5078 0.7547
XGBoost (Tuned) 0.7635 0.6094 0.7524
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Model Performance Comparison (Accuracy, Recall, AUC)
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Fig. 1. Bar chart comparison of model performance on the 20% test set across Accuracy,
Recall, and ROC-AUC (Photo/Picture credit: Original).

4.2 Confusion Matrices and ROC Curves

As shown in Fig. 2(a), the confusion matrix for LR cor-
rectly identifies 348 non-defaulters and 85 defaulters,
while misclassifying 99 non-defaulters as defaulters and
43 defaulters as non-defaulters, indicating a modest ten-
dency toward false positives. Fig. 2(b) presents the RF
matrix, which correctly predicts 390 non-defaulters and 61

defaulters, with 49 false positives and 67 false negatives,
demonstrating higher specificity but lower sensitivity
compared to LR. Fig. 2(c) illustrates the XGBoost matrix,
showing 361 correct non-default predictions and 78 cor-
rect default predictions alongside 86 false positives and
50 false negatives, reflecting a stronger balance between
precision and recall.

Confusion Matrices: Logistic Regression, Random Forest, XGBoost
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Fig. 2. Confusion matrices for each model (Photo/Picture credit: Original).

The LR matrix reveals a higher false-negative rate relative
to XGBoost, consistent with its lower ROC-AUC; RF’s

confusion matrix exhibits balanced errors but at the cost
of a lower recall than LR.

ROC Curves: Logistic Regression, Random Forest, XGBoost
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Fig. 3. ROC Curves for each model (Photo/Picture credit: Original).

Fig.s 3(a), (b) (c) display the receiver operating charac-

teristic (ROC) curves of the LR, XGBoost, and RF classi-
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fiers, respectively. Each curve plots the true positive rate
(TPR) against the false positive rate (FPR) across decision
thresholds, while the 45° dashed line represents the per-
formance of an uninformative classifier (AUC = 0.5).

In Fig. 3(a), the LR model attains an area under the curve
(AUC) of 0.725, indicating moderate discriminative abil-
ity. The curve rises sharply at low FPR values but flattens
near TPR = 0.80, suggesting diminishing sensitivity gains
as the threshold is relaxed.

Fig. 3(b) illustrates the XGBoost classifier, which achieves

a higher AUC of 0.752. Relative to LR, its ROC curve
sustains greater TPR for the same FPR—especially in
the midrange (FPR = 0.2-0.6)—demonstrating improved
identification of positive instances.

Finally, Fig. 3(c) presents the RF ROC with the highest
AUC of 0.755. Across almost all thresholds, the RF curve
dominates the other two, reflecting superior overall per-
formance and robustness to threshold selection.

These results collectively confirm that ensemble methods
(XGBoost and RF) provide enhanced predictive accuracy
and discriminative power compared to the baseline LR
model.

4.3 Model Interpretability

To investigate how individual predictors drive default-risk
estimates, we employ SHAP summary plots, a method
that, when combined with rule extraction techniques, has
been shown to significantly improve transparency and
trustworthiness in credit-risk modelling [10]. Each hor-

izontal strip ranks a feature by its mean absolute impact
on the model’s log-odds output (x-axis), while each dot
represents one test instance colored from blue (low feature
value) to red (high feature value).

In the LR summary, the strongest contributor is the ratio
of the second-month payment to its corresponding bill:
low ratios generate positive SHAP contributions (increased
risk), whereas high ratios yield negative contributions
(reduced risk). Close behind is the total count of past pay-
ment delays, where a larger count shifts risk upward. The
third key driver is the status of the most recent payment
cycle: missing or late payments push predictions toward
default, while on-time behavior pulls them downward.
Other variables—such as the first-cycle payment amount
and the longest recorded delinquency—exert more mod-
est, predominantly negative effects when large.

In the XGBoost visualization, the ordering of importance
remains similar but uncovers threshold effects. The most
recent repayment record now swings SHAP values by
over 1.5 log-odds units in extreme cases, and the count
of delays and initial billing amounts exhibit non-mono-
tonic patterns: for certain ranges, they increase risk, then
reverse and reduce it at higher values. This nonlinear
behavior reflects interaction effects captured by the tree
ensemble.

Overall, both the linear and nonlinear models agree that
measures of repayment timeliness and payment-to-bill ra-
tios dominate predictive power, while other credit history
metrics contribute secondary, context-dependent adjust-
ments (Fig. 4).

SHAP Feature Importance: Logistic Regression vs. XGBoost
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Fig. 4. SHAP summary plots for LR and XGB (Photo/Picture credit: Original).

RF was not supported by the employed TreeExplainer and
is therefore omitted. These explainability. Results comply
with emerging regulatory expectations for transparent
credit-risk models.

4.4 Discussion

In this study, we compared LR, RF, and XGBoost for
credit default prediction using a real-world imbalanced
dataset. The results highlight trade-offs between model



discrimination power, recall, and interpretability, with
implications for both algorithm selection and imbalance
handling strategies.

The first is ‘Model Performance Comparison and
Strengths’: LR achieved the highest recall (approximately
0.66), which aligns with prior findings that linear models
tend to favour sensitivity under ROC-AUC optimisation
frameworks [1]. This makes LR particularly suitable for
applications where capturing defaulters is critical, such as
in regulatory contexts. However, it also demonstrated rel-
atively limited discrimination capacity compared to tree-
based models.

In contrast, RF attained the highest AUC (0.755), indicat-
ing superior class separation, but its recall was substantial-
ly lower (around 0.48), echoing the classic precision-re-
call trade-off observed in high-variance ensemble methods
[1, 5]. XGBoost, especially with class weighting and
moderate oversampling, yielded a balance between recall
(0.61-0.64) and AUC (0.75), providing a strong compro-
mise between sensitivity and overall predictive power [1].
Consistent with established literature on imbalanced
learning, imbalance mitigation significantly impacted
recall across models. Specifically, applying SMOTE to
RF improved recall from 0.2891 to 0.5078, verifying the
effectiveness of synthetic oversampling in enriching mi-
nority class signal [3, 4]. For XGBoost, undersampling
produced the highest recall (0.6484), though it slightly re-
duced AUC, indicating a trade-off between sensitivity and
global performance. These findings suggest that hybrid
approaches—such as class weighting plus SMOTE—can
provide more stable generalisation [3, 5].

Despite robust results, this study has limitations. The
default labels used were derived from binary outcomes,
which may oversimplify real-world repayment behaviour.
Moreover, hyperparameter tuning was not exhaustively
pursued due to computational constraints, potentially af-
fecting XGB’s full performance ceiling.

That said, the integration of SHAP explanations offered
valuable insight. XGB models showed high feature attri-
bution clarity, with PAY 0, NUM_PAY DELAYS, and
payment ratios being consistently impactful [2]. In con-
trast, LR’s feature impact distribution was flatter, aligning
with the model’s limited nonlinearity. This supports the
argument that tree-based models, when properly regular-
ised, offer both interpretability and performance [2].
Future studies may consider ensemble stacking to com-
bine the recall advantages of LR with the AUC strength
of RF and XGB. Additionally, incorporating temporal
features or account-level behavioural data could further
improve sensitivity and early warning detection. Finally,
testing on multi-institution datasets would help validate
generalisability beyond the current sample.
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5 Conclusion

This study presents a systematic evaluation of three wide-
ly used classifiers—LR, RF, and XGBoost—on the UCI
“Default of Credit Card Clients” dataset under severe
class imbalance. By expanding the original 23 features
with ten engineered predictors (such as payment-to-bill
ratios and bill growth rates), and applying both SMOTE
oversampling and random undersampling within stratified
cross-validation, the work delivers three key contribu-
tions: The first is ‘Benchmarking Imbalance Remedies’:
The comparative analysis reveals that SMOTE enhances
RF’s recall by over 75% relative to no sampling, while
XGBoost combined with class-weighting and moderate
undersampling achieves the highest sensitivity to default-
ers. The second is ‘Feature Importance and Transparen-
cy’: SHAP-based interpretability confirms that recent
payment behaviour and billing metrics are consistently
the strongest predictors, satisfying regulatory demands for
transparent decision logic. The third is ‘Open-Source Re-
producibility’: All preprocessing scripts, model pipelines,
and evaluation artifacts are provided, enabling straightfor-
ward replication and extension.

From a practical standpoint, institutions prioritizing de-
faulter detection may adopt LR or XGBoost for their
superior recall, whereas portfolios requiring maximal dis-
crimination benefit from a SMOTE-enhanced RF. Future
work could explore hybrid sampling schemes, cost-sen-
sitive learning, and real-time model updating to further
optimize default-prediction systems.
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